Bernstein centre for enhanced Langlands parameters

Ahmed Moussaoui

University of Calgary

December 5, 2015

Bernstein decomposition

Let G be a connected reductive group over a p-adic field F. The set of (equivalences classes of) irreducibles representations of G is decomposed as

$$\operatorname{Irr}(G) = \bigsqcup_{\mathfrak{s} \in \mathcal{B}(G)} \operatorname{Irr}(G)_{\mathfrak{s}},$$

where $\mathfrak{s} = [M, \sigma]$ with M a Levi subgroup of G and $\sigma \in \mathrm{Irr}(M)$ cuspidal. There is a map $\mathbf{Sc} : \mathrm{Irr}(G) \longrightarrow \Omega(G)$ which associate to an irreducible representation its cuspidal support.

Question

How to define the Bernstein decomposition for Langlands parameters? What is the notion of cuspidal Langlands parameter? of cuspidal support?

Generalized Springer correspondence

Let H be a complex connected reductive group For all $x \in H$, we denote $A_H(x) = Z_H(x)/Z_H(x)^{\circ}$.

$$\mathcal{N}_{H}^{+} = \left\{ (\mathcal{C}_{u}^{H}, \eta) \middle| u \in H \text{ unipotent}, \eta \in \operatorname{Irr}(A_{H}(u)) \right\}$$

We denote by S_H the set of (H-conjugacy classes of) triples (L, C_v^L, ε) with

- L a Levi subgroup of H;
- C_v^L an unipotent *L*-orbit;
- $\varepsilon \in \operatorname{Irr}(A_L(v))$ cuspidal.
- For all H, the triple $(T, \{1\}, 1) \in S_H$, and $N_H(T)/T$ is the Weyl group of H;

H	condition	unipotent orbi	$A_H(u)$	ε
GL_n	n = 1	$\mathcal{O}_{(1)}$	{1}	1
Sp_{2n}	2n=d(d+1)	$\mathcal{O}_{(2d,2d-2,\ldots,4,2)}$	$(\mathbb{Z}/2\mathbb{Z})^d$	$\varepsilon(z_{2i})=(-1)^i$
SO_n	$n=d^2$	$\mathcal{O}_{(2d-1,2d-3,,3,1)}$	$(\mathbb{Z}/2\mathbb{Z})^{d-1}$	$\varepsilon(z_{2i-1}z_{2i+1})=-1$

Let $u \in G$ be a unipotent element and $\varepsilon \in Irr(A_H(u))$.

Let P = LU be a parabolic subgroup of H and $v \in L$ be a unipotent element.

We define

$$Y_{u,v} = \left\{ g Z_L(v)^{\circ} U \mid g \in H, g^{-1} u g \in v U \right\}$$

and

$$d_{u,v} = \frac{1}{2}(\dim Z_H(u) - \dim Z_L(v)).$$

Then dim $Y_{u,v} \leq d_{u,v}$ and $Z_H(u)$ acts on $Y_{u,v}$ by left translation. We denote by $S_{u,v}$ the permutation representation on the irreducibles components of $Y_{u,v}$ of dimension $d_{u,v}$.

If P = B = TU, then

$$Y_{u,1} = \left\{ gB \in H/B \mid g \in H, g^{-1}ug \in U \right\} = \left\{ B' \in \mathcal{B} \mid u \in B' \right\} = \mathcal{B}_u.$$

Definition

We say that ε is cuspidal, if and only if, for all proper parabolic subgroup P = LU, for all unipotent $v \in L$, we have $\operatorname{Hom}_{A_{\mathcal{C}}(u)}(\varepsilon, S_{u,v}) = 0$.

Generalized Springer correspondence

$$\mathcal{N}_{H}^{+} = \left\{ (\mathcal{C}_{u}^{H}, \eta) \middle| u \in H \text{ unipotent}, \eta \in \operatorname{Irr}(A_{H}(u)) \right\}$$

 \mathcal{S}_H the set of (H-conjugacy classes of) triples $(L, \mathcal{C}_{v}^{L}, \varepsilon)$ with

- L a Levi subgroup of H;
- C_v^L an unipotent L-orbit;
- $\varepsilon \in \operatorname{Irr}(A_L(v))$ cuspidal.

We denote by $W_L^H = N_H(L)/L$.

Theorem (Lusztig,1984)

$$\mathcal{N}_{H}^{+} \simeq \bigsqcup_{(L, \mathcal{C}_{v}^{L}, \varepsilon) \in \mathcal{S}_{H}} \operatorname{Irr}(W_{L}^{H})$$
$$(\mathcal{C}_{v}^{H}, n) \longleftrightarrow (L, \mathcal{C}_{v}^{L}, \varepsilon; \rho)$$

Generalized Springer correspondence in a disconnected case

We suppose now that H is a reductive not necessarily connected H acts by conjugation on $\mathcal{N}_{H^{\circ}}^+$ and $\mathcal{S}_{H^{\circ}}$.

Proposition (M.)

The generalized Springer correspondence for H° is H-équivariante, i.e.

$$h \cdot (\mathcal{C}_{u}^{H^{\circ}}, \eta) \longleftrightarrow h \cdot (L^{\circ}, \mathcal{C}_{v}^{L^{\circ}}, \varepsilon; \rho).$$

Définition

We call quasi-Levi subgroup of H a subgroup of the form $L = Z_H(A)$, where A is a torus contained in H° .

The neutral component of a quasi-Levi subgroup of H is a Levi subgroup of H° .

 $W_I^H = N_H(A)/Z_H(A)$ admits $W_{I^{\circ}}^{H^{\circ}} = N_{H^{\circ}}(L^{\circ})/L^{\circ}$ as normal subgroup.

Generalized Springer correspondence in a disconnected case

Let $u \in H^{\circ}$ be unipotent et $\varepsilon \in \operatorname{Irr}(A_{H}(u))$. We say that ε is cuspidal if all irreducibles subrepresentations of $A_{H^{\circ}}(u)$ which appear in the restriction to $A_{H^{\circ}}(u)$ are cuspidals.

We denote by

$$\mathcal{N}_H^+ = \left\{ (\mathcal{C}_u^H, \eta), \ u \in H^\circ \ \mathrm{unipotent}, \eta \in \mathrm{Irr}(A_H(u)) \right\}$$

 S_H the set of (*H*-conjugacy classes of) triples (L, C_V^L, ε) avec

- L quasi-Levi subgroup of H;
- C_v^L a unipotent *L*-orbit;
- $\varepsilon \in \operatorname{Irr}(A_L(v))$ cuspidal.

Theorem (M.)

For
$$H = O_n$$
,

$$\mathcal{N}_H^+ \simeq \bigsqcup_{(L,\mathcal{C}_v^L,\varepsilon) \in \mathcal{S}_H} \operatorname{Irr}(W_L^H)$$

$$(\mathcal{C}_{u}^{H}, \eta) \longleftrightarrow (L, \mathcal{C}_{v}^{L}, \varepsilon, \rho)$$

Langlands correspondence

Let be F a p-adic field and G a split reductive connected group over F. We denote by \widehat{G} the Langlands dual group of G, W_F the Weil group of F and $W_F' = W_F \times \mathrm{SL}_2(\mathbb{C})$ the Weil-Deligne group.

Définition

A Langlands parameter of G is a continous morphism

$$\phi: W_F' \longrightarrow \widehat{G},$$

such that

- $\phi|_{\mathrm{SL}_2(\mathbb{C})}$ is algebraic;
- $\phi(W_F)$ consist of semisimple elements.

We denote by $\Phi(G)$ the set of \widehat{G} -conjugation classes of Langlands parameters of G.

Langlands correspondence

We denote by Irr(G) the set of (smooth) irreducible representations of G.

Conjecture

There exists a finite to one map

$$\mathrm{rec}_G:\mathrm{Irr}(G)\longrightarrow \Phi(G).$$

Hence,

$$\operatorname{Irr}(G) = \bigsqcup_{\phi \in \Phi(G)} \Pi_{\phi}(G).$$

There exists a bijection

$$\Pi_{\phi}(G) \simeq \operatorname{Irr}(\mathcal{S}_{\phi}^{G}),$$

avec $S_{\phi}^{G} = Z_{\widehat{G}}(\phi)/Z_{\widehat{G}}(\phi)^{\circ}Z_{\widehat{G}}$. + other proprieties.

Langlands correspondence

The Langlands correspondence is proved for GL_n by Harris et Taylor; Henniart et Scholze, for SO_n et Sp_{2n} by Arthur. We denote by

$$\Phi(G)^+ = \{(\phi, \eta) | \phi \in \Phi(G), \ \eta \in \operatorname{Irr}(S_\phi^G) \}.$$

Then

$$\operatorname{rec}_{G}^{+}:\operatorname{Irr}(G)\simeq\Phi(G)^{+}.$$

Properties of the Langlands correspondence : for all $\phi \in \Phi(G)$, the following are equivalent

- one element in $\Pi_{\phi}(G)$ is in the discrete serie;
- all elements in $\Pi_{\phi}(G)$ are in the discrete serie;
- $\phi \in \Phi(G)_2$ (is discrete).

Supercuspidal?

Let G be one of the split groups $\operatorname{Sp}_{2n}(F)$ or $\operatorname{SO}_n(F)$. For all unitary irreducible supercuspidal representation π de $\operatorname{GL}_{d_{\pi}}(F)$ and for all integer $a\geqslant 1$, the induced representation

$$\pi \left| \right| \left| \frac{a-1}{2} \times \pi \right| \left| \frac{a-3}{2} \times \ldots \times \pi \right| \left| \frac{1-a}{2} \right|$$

admit a unique irreducible subrepresentation of $\mathrm{GL}_{ad_{\pi}}(F)$: $\mathrm{St}(\pi,a)$. Let τ be an irreducible discrete serie of G. We denote by

$$Jord(\tau) = \{(\pi, a)\}\$$

with π an unitary irreducible supercuspidal representation of a $\mathrm{GL}_{d_{\pi}}(F)$ and $a \geqslant 1$ such that there exists an integer a' which verify :

$$\begin{cases} a \equiv a' \mod 2 \\ \operatorname{St}(\pi, a) \rtimes \tau & \text{irréductible} \\ \operatorname{St}(\pi, a') \rtimes \tau & \text{réductible} \end{cases}$$

Let $\varphi \in \Phi(G)$ a discrete parameter. The decomposition of $\operatorname{Std} \circ \phi$, where $\operatorname{Std} : \widehat{G} \hookrightarrow \operatorname{GL}_{N_{\widehat{G}}}(\mathbb{C})$ is :

$$\operatorname{Std} \circ \phi = \bigoplus_{\pi \in I_{\varphi}} \bigoplus_{a \in J_{\pi}} \pi \boxtimes S_{a}.$$

We call Jordan bloc of φ and we denote by $\operatorname{Jord}(\varphi) = \{(\pi, a) | \pi \in I_{\varphi}, a \in J_{\pi}\}.$

```
Jord(\varphi) without hole (or jump) \iff ((\pi,a)\in Jord(\varphi) et a\geqslant 3\Longrightarrow (\pi,a-2)\in Jord(\varphi)). A_{\widehat{G}}(\varphi) is generated by \begin{cases} z_{\pi,a} & \text{pour } (\pi,a)\in Jord(\varphi) \text{ et } a \text{ pair } \\ z_{\pi,a}z_{\pi,a'} & \text{pour } (\pi,a), (\pi,a')\in Jord(\varphi) \text{ without parity condition on } a,a' \end{cases} (\pi,a), (\pi,a')\in Jord(\varphi), \text{ with } a'< a, \text{ consecutive } \Leftrightarrow \text{ for all } b\in \llbracket a'+1,a-1\rrbracket, (\pi,b)\not\in Jord(\varphi). a_{\pi,\min} \text{ the smallest integer } a\geqslant 1 \text{ such that } (\pi,a)\in Jord(\varphi).
```

Définition

A character ε of $A_{\widehat{G}}(\varphi)$ is alternate if for all $(\pi, a), (\pi, a') \in \operatorname{Jord}(\varphi)$ consecutive, $\varepsilon(z_{\pi, a} z_{\pi, a'}) = -1$ and if for all $(\pi, a_{\pi, \min}) \in \operatorname{Jord}(\varphi)$ with $a_{\pi, \min}$ evenn, $\varepsilon(z_{\pi, a_{\pi, \min}}) = -1$.

Theorem (Mæglin)

The Langlands classification of discrete series of G by Arthur induce a bijection between the set of irreducible supercuspidal representation of G and the set of pairs (φ, ε) such that $\operatorname{Jord}(\varphi)$ is without holes and ε is alternate; the bijection $\tau \mapsto (\varphi, \varepsilon)$ is defined by $\operatorname{Jord}(\varphi) = \operatorname{Jord}(\tau)$ et $\varepsilon = \varepsilon_{\tau}$.

Stable Bernstein centre, after Haines

Let G be a split connected reductive p-adic group. (\widehat{M},λ) with \widehat{M} a Levi subgroup of \widehat{G} et $\lambda:W_F\longrightarrow \widehat{M}$ discrete. Unramified cocharacters $\mathfrak{X}(\widehat{M})=\{\chi:W_F/I_F\longrightarrow Z_{\widehat{M}}^\circ\}\simeq Z_{\widehat{M}}^\circ$.

Definition

- the cuspidal L-data $(\widehat{M}_1, \lambda_1)$ and $(\widehat{M}_2, \lambda_2)$ are associate if there exists $g \in \widehat{G}$ such that ${}^g\widehat{M}_1 = \widehat{M}_2$ and $\lambda_2 = {}^g\lambda_1$;
- ② the cuspidal *L*-data $(\widehat{M}_1, \lambda_1)$ and $(\widehat{M}_2, \lambda_2)$ are inertially equivalent if there exists $g \in \widehat{G}$ and $\chi \in \mathfrak{X}(\widehat{M}_2)$ such that ${}^g\widehat{M}_1 = \widehat{M}_2$ and $\lambda_2 = {}^g\lambda_1\chi$.

We denote by $\Omega(G)_{\rm st}$ (resp. $\mathcal{B}(G)_{\rm st}$) the equivalence classes for relation 1 (resp. 2).

Stable Bernstein centre, after Haines

Let $i = [\widehat{M}, \lambda] \in \mathcal{B}(G)_{\mathrm{st}}$. We can define the torus

$$\mathcal{T}_{\lambda} = \{(\lambda \chi)_{\widehat{M}}, \ \chi \in \mathfrak{X}(\widehat{M})\}$$

and the finite group

$$W_{\lambda} = \left\{ w \in N_{\widehat{G}}(\widehat{M}) / \widehat{M}, \exists \chi \in \mathfrak{X}(\widehat{M}), ({}^{w}\lambda)_{\widehat{M}} = (\lambda \chi)_{\widehat{M}} \right\}.$$

We have

$$\Omega(G)_{\mathrm{st}} \simeq \bigsqcup_{\dot{\iota} \in \mathcal{B}(G)_{\mathrm{st}}} \mathcal{T}_{\dot{\iota}}/\mathcal{W}_{\dot{\iota}}.$$

Définition

We call the stable Bernstein centre of G and we denote by $\mathfrak{Z}(G)_{\mathrm{st}}$ the ring of regulars functions on $\Omega(G)_{\mathrm{st}}$:

$$\mathfrak{Z}(G)_{\mathrm{st}} := \mathbb{C}[\Omega(G)_{\mathrm{st}}].$$

Stable Bernstein centre, after Haines

Let $\phi: W_F \times \mathrm{SL}_2(\mathbb{C}) \longrightarrow \widehat{G}$ a Langlands parameter.

$$\begin{array}{cccc} \lambda_{\phi}: & W_{F} & \longrightarrow & \widehat{G} \\ & w & \longmapsto & \phi\left(w, \begin{pmatrix} |w|^{1/2} & & \\ & |w|^{-1/2} \end{pmatrix}\right) \end{array}$$

We denote by $\widehat{M}_{\lambda_\phi}$ a Levi subgroup of \widehat{G} which contains minimally the image of λ_ϕ .

$$\mathscr{L}_{\mathrm{st}}: \ \Phi(\mathcal{G}) \ \longrightarrow \ \Omega(\mathcal{G})_{\mathrm{st}} \ , \ \phi \ \longmapsto \ (\widehat{M}_{\lambda_{\phi}}, \lambda_{\phi})_{\widehat{G}}$$

$$\Phi(G) = \bigsqcup_{(\widehat{M}, \lambda) \in \Omega(G)_{\mathrm{st}}} \Phi(G)_{\lambda}, \quad \text{where} \quad \Phi(G)_{\lambda} = \{\phi \in \Phi(G), \mathscr{L}_{\mathrm{st}}(\phi) = (\widehat{M}, \lambda)\}$$

$$\Phi(G) = \bigsqcup_{i \in \mathcal{B}(G)_{\mathrm{st}}} \Phi(G)_i, \text{ where } \Phi(G)_i = \{\phi \in \Phi(G), \mathscr{L}_{\mathrm{st}}(\phi) \in i\}.$$

Compatibility of the Langlands correspondence with the parabolic induction

Compatibility conjecture

Let P = LU be a parabolic subgroup of G, $\sigma \in Irr(L)$ supercuspidal and π an irreducible subquotient of $i_P^G(\sigma)$.

- $\phi_{\sigma}:W_{F}'\longrightarrow \widehat{L}$ Langlands parameter of σ ;
- $\phi_{\pi}:W_{F}'\longrightarrow\widehat{G}$ Langlands parameter of π ;

Then, $(\lambda_{\phi_{\sigma}})_{\widehat{G}} = (\lambda_{\phi_{\pi}})_{\widehat{G}}$.

Let $i = [\widehat{M}, \lambda] \in \mathcal{B}(G)_{\mathrm{st}}$.

$$\widetilde{\Pi}_{\lambda}(G) = \bigsqcup_{\lambda = \lambda_{\phi}} \Pi_{\phi}(G).$$

$$\widetilde{\Pi}_{\dot{\iota}}(G) = \bigsqcup_{\lambda\chi \in \mathcal{T}_{\dot{\iota}}/\mathcal{W}_{\dot{\iota}}} \widetilde{\Pi}_{\lambda\chi}(G).$$

Compatibility of the Langlands correspondence with the parabolic induction

$$\widetilde{\Pi}_{\lambda}(G) = \bigsqcup_{\lambda = \lambda_{\phi}} \Pi_{\phi}(G).$$

Proposition

The compatibility conjecture is equivalent to that for all Levi subgroup \widehat{M} of \widehat{G} and all $\lambda:W_F\longrightarrow \widehat{M}$ discrete, we have :

$$\widetilde{\Pi}_{\lambda}(G) = \bigsqcup_{\widehat{L} \in \mathcal{L}(G)_{\lambda}} \bigsqcup_{\phi \in \Phi(L)_{\lambda, \text{cusp}}} \bigsqcup_{\pi \in \Pi_{\phi}(L)_{\text{cusp}}} \mathcal{JH}(i_{LU}^G(\pi))$$

We still suppose that G is a split connected reductive p-adic group and let L be a Levi subgroup of G.

Définition (M.)

Let $\varphi \in \Phi(L)$. We say that φ is cuspidal when

- φ is discrete;
- $\operatorname{Irr}(\mathcal{S}^{\mathcal{L}}_{\varphi})_{\operatorname{cusp}}$ is not empty.

An enhanced Langlands parameter is cuspidal $(\varphi, \varepsilon) \in \Phi(L)^+$ when φ is cuspidal and $\varepsilon \in \operatorname{Irr}(\mathcal{S}_{\varphi}^L)_{\operatorname{cusp}}$.

Conjecture (M.)

Let $\varphi \in \Phi(L)$. The L-packet $\Pi_{\varphi}(L)$ contains supercuspidal representations, if and only if, φ is a cuspidal Langlands parameter. Moreover, the supercuspidal representations in $\Pi_{\varphi}(L)$ are parametrized by $\operatorname{Irr}(\mathcal{S}_{\varphi}^{L})_{\operatorname{cusp}}$, $\Phi_{\varphi}(G)_{\operatorname{cusp}} \simeq \operatorname{Irr}(\mathcal{S}_{\varphi}^{L})_{\operatorname{cusp}}$.

Proposition (M.)

Let $\lambda: W_F \longrightarrow \widehat{M}$ a discrete parameter.

If $\phi \in \Phi(M)$ is a Langlands parameter of M with infinitesimal cocharacter λ , then $\phi = \lambda$.

$$\widetilde{\Pi}_{\lambda}(M) = \Pi_{\lambda}(M).$$

Moreover, all representations of $S_{\lambda}(M)$ are cuspidal, i.e.

$$\operatorname{Irr}(\mathcal{S}_{\lambda}^{M}) = \operatorname{Irr}(\mathcal{S}_{\lambda}^{M})_{\operatorname{cusp}}.$$

Proposition (M.)

For the linear group, symplectic or special orthogonal split group, the cuspidal Langlands parameters are :

• for $GL_n(F)$,

$$\varphi:W_F\longrightarrow \mathrm{GL}_n(\mathbb{C}),$$
 irréductible;

• for $SO_{2n+1}(F)$,

$$\varphi = \bigoplus_{\pi \in I_O} \bigoplus_{a=1}^{d_{\pi}} \pi \boxtimes S_{2a} \bigoplus_{\pi \in I_S} \bigoplus_{a=1}^{d_{\pi}} \pi \boxtimes S_{2a-1}, \ \forall \pi \in I_O, d_{\pi} \in \mathbb{N}, \ \forall \pi \in I_S, d_{\pi} \in \mathbb{N}^*;$$

• for $\operatorname{Sp}_{2n}(F)$ ou $\operatorname{SO}_{2n}(F)$,

$$\varphi = \bigoplus_{\pi \in I_S} \bigoplus_{a=1}^{d_{\pi}} \pi \boxtimes S_{2a} \bigoplus_{\pi \in I_O} \bigoplus_{a=1}^{d_{\pi}} \pi \boxtimes S_{2a-1} \ \forall \pi \in I_O, d_{\pi} \in \mathbb{N}^*, \ \forall \pi \in I_S, d_{\pi} \in \mathbb{N}.$$

Proposition

Moreover, after the theorem of Harris-Taylor et Henniart for GL and the theorem of Moeglin, the supercuspidal representations of G are parametrized by (φ,ε) with φ a cuspidal Langlands parameter of G and $\varepsilon\in\operatorname{Irr}(\mathcal{S}_{\varphi}^{G})_{\operatorname{cusp}}$. In other words, the conjecture on the parametrization of supercuspidal representations is true.

Let G be a split reductive p-adic group. $(\widehat{L}, \varphi, \varepsilon)$ with \widehat{L} a Levi subgroup of \widehat{G} and $(\varphi, \varepsilon) \in \Phi(L)^+$ cuspidal. Unramified cocharacters $\mathfrak{X}(\widehat{L}) = \{\chi : W_F/I_F \longrightarrow Z_{\widehat{L}}^\circ\} \simeq Z_{\widehat{L}}^\circ$.

Définition

- the cuspidal L-data $(\widehat{L}_1, \varphi_1, \varepsilon_1)$ and $(\widehat{L}_2, \varphi_2, \varepsilon_2)$ are associate if there exists $g \in \widehat{G}$ such that ${}^g\widehat{L}_1 = \widehat{L}_2$, ${}^g\varphi_1 = \varphi_2$ et $\varepsilon_1^g \simeq \varepsilon_2$;
- ② the cuspidal L-data $(\widehat{L}_1, \varphi_1, \varepsilon_1)$ and $(\widehat{L}_2, \varphi_2, \varepsilon_2)$ are inertially equivalente if there exists $g \in \widehat{G}$ et $\chi \in \mathfrak{X}(\widehat{L}_2)$ such that ${}^g\widehat{L}_1 = \widehat{L}_2, \; {}^g\varphi_1 = \varphi_2\chi \; \text{ et } \; \varepsilon_2^g \simeq \varepsilon_2$;

We denote by $\Omega(G)_{st}^+$ (resp. $\mathcal{B}(G)_{st}^+$) the equivalences classes for relation 1 (resp. 2).

Let $j=[\widehat{L},\varphi,\varepsilon]\in\mathcal{B}(G)^+_{\mathrm{st}}.$ We can define the torus

$$\mathcal{T}_{\widehat{\mathcal{L}}} = \{(\varphi \chi)_{\widehat{\mathcal{L}}}, \ \chi \in \mathfrak{X}(\widehat{\mathcal{L}})\}$$

and the finite group

$$\mathcal{W}_{\widehat{\mathcal{J}}} = \left\{ w \in N_{\widehat{\mathcal{G}}}(\widehat{L})/\widehat{L}, \exists \chi \in \mathfrak{X}(\widehat{L}), (^{w}\varphi)_{\widehat{L}} = (\varphi\chi)_{\widehat{L}} \right\}.$$

We have

$$\Omega(G)_{\operatorname{st}}^+ \simeq \bigsqcup_{j \in \mathcal{B}(G)_{\operatorname{st}}^+} \mathcal{T}_j/\mathcal{W}_j.$$

We have the following map

$$egin{array}{lll} \Phi(G) & \longrightarrow & \Omega(G)_{\mathrm{st}} \ \phi & \longmapsto & (\widehat{M}_{\lambda_{\phi}}, \lambda_{\phi})_{\widehat{G}} \end{array}, \ & \Omega(G)_{\mathrm{st}}^{+} & \longrightarrow & \Omega(G)_{\mathrm{st}} \ (\widehat{L}, \varphi, \varepsilon)_{\widehat{G}} & \longmapsto & (\widehat{M}_{\lambda_{\varphi}}, \lambda_{\varphi})_{\widehat{G}} \end{array}, \ & \Phi(G)^{+} & \longrightarrow & \Omega(G)_{\mathrm{st}}^{+} \ (\phi, \eta) & \longmapsto & (\widehat{L}, \varphi, \varepsilon)_{\widehat{G}} \end{array}, ??????$$

Conjecture

Let $\varphi:W_F'\longrightarrow \widehat{L}$ be a cuspidal Langlands parameter of L. Assume the conjecture (on the parametrization of supercuspidal) true. If $\sigma\in\Pi_{\varphi}(L)_{\mathrm{cusp}}$ is parametrized by $\varepsilon\in\mathrm{Irr}(\mathcal{S}_{\varphi}^L)_{\mathrm{cusp}}$, then if we denote by $\mathfrak{s}=[L,\sigma]_G,\ j=[\widehat{L},\varphi,\varepsilon]$, we have isomorphism :

such that for all $\chi \in T_{\mathfrak{s}}, \ w \in W_{\mathfrak{s}}$:

$$\widehat{\mathbf{w}\cdot\boldsymbol{\chi}}=\widehat{\mathbf{w}}\cdot\widehat{\boldsymbol{\chi}}.$$

$$\Omega(G) \simeq \Omega(G)_{\mathrm{st}}^+$$

Cuspidal support of an enhanced Langlands parameter

Theorem (M.)

Let G be a split reductive p-adic group. We can define a map

$$(\phi,\eta) \longmapsto (\widehat{L},\varphi,\varepsilon_0)_{\widehat{G}},$$

with

- \widehat{L} a Levi subgroup of \widehat{G} ;
- $\varphi \in \Phi(L)$ a cuspidal Langlands parameter of L;
- an irreducible representation ε_0 of $A_{Z_{\widehat{I}}(\varphi_{|W_{\varepsilon}})^{\circ}}(\varphi_{|\mathrm{SL}_2(\mathbb{C})})$.

The Langlands parameters ϕ and φ have the same infinitesimal cocharacter and for all $w \in W_F$, we have

$$\chi_c(w) = \phi(1, d_w)/\varphi(1, d_w) \in Z_{\widehat{I}}^{\circ},$$

with
$$d_w = \begin{pmatrix} |w|^{1/2} & & & \\ & |w|^{-1/2} \end{pmatrix}$$

Cuspidal support of an enhanced Langlands parameter

Theorem (M.)

Let G be one of $\operatorname{Sp}_{2n}(F)$ ou $\operatorname{SO}_n(F)$. We can define a map

Moreover, the fiber are parametrized by irreducible representations of

$$N_{Z_{\widehat{G}}(\varphi_{|W_F}\chi_c)}(A_{\widehat{L}})/Z_{\widehat{L}}(\varphi_{|W_F}\chi_c),$$

where c runs over the correcting cocharacter of φ in \widehat{G} .

Equivalence of categories

Let G be $\mathrm{Sp}_{2n}(F)$ or $\mathrm{SO}_n(F)$, $M=\mathrm{GL}_{d_1}^{\ell_1}\times\ldots\times\mathrm{GL}_{d_r}^{\ell_r}\times G_{n'}$ Levi subgroup of G and

$$\sigma = \underbrace{\sigma_1 \boxtimes \ldots \boxtimes \sigma_1}_{\ell_1} \boxtimes \ldots \boxtimes \underbrace{\sigma_r \boxtimes \ldots \boxtimes \sigma_r}_{\ell_r} \boxtimes \tau,$$

with σ_i unitary irreducible supercuspidal representation of GL_{d_i} and τ supercuspidal irreducible representation of $G_{n'}$.

We denote by $\mathfrak{s} = [M, \sigma]_G$. Heiermann associate to each \mathfrak{s} :

- ullet a based root datum $\mathcal{R}_{\mathfrak{s}} = (X_{\mathfrak{s}}, \Sigma_{\mathfrak{s}}, X^{\vee}, \Sigma_{\mathfrak{s}}^{\vee}, \Delta_{\mathfrak{s}})$;
- a finite group $R_{\mathfrak{s}}$;
- parameters functions $(\lambda_{\mathfrak{s}}, \lambda_{\mathfrak{s}}^*)$
- an affine Hecke algebra $\mathcal{H}_{\mathfrak{s}}$.

Equivalence of categories

Theorem (Heiermann)

The category $\operatorname{Rep}(G)_{\mathfrak{s}}$ is equivalent to the category of right $\mathcal{H}_{\mathfrak{s}} \rtimes \mathbb{C}[R_{\mathfrak{s}}]$ -modules.

This equivalence preserve the objects of the discrete serie and tempered objects.

- We have $\Sigma_{\mathfrak{s}} = \bigsqcup_{i=1}^r \Sigma_i$;
- If Σ_i is type A, C, D or (type B for long roots), $\alpha \in \Sigma_i \cap \Delta_{\mathfrak{s}}$ $\lambda_{\mathfrak{s}}(\alpha) = 1$;
- If Σ_i is type B, for the short root $\lambda_{\mathfrak{s}}(\alpha_i) = x_i + x_i'$, $\lambda_{\mathfrak{s}}^*(\alpha_i) = x_i x_i'$, with x_i the unique positive real number x such that $\sigma_i \mid |x| \times \tau$ reducible (same for x_i' with $\sigma_i \zeta$).

Parameter of the graded Hecke algebra obtained by $\mathcal{H}_{\mathfrak{s}}$

$$A_{\ell_{i}-1} \qquad \frac{2}{\circ} \qquad \frac{2}{\circ} \qquad \frac{2}{\circ} \qquad \frac{2}{\circ}$$

$$B_{\ell_{i}}/C_{\ell_{i}} \qquad \frac{2}{\circ} \qquad \frac{2}{\circ} \qquad \frac{2}{\circ} \qquad \frac{2}{\circ} \qquad \frac{3\sigma_{i}+1}{\circ} \quad \text{if } \sigma_{i} \in \text{Jord}(\tau)$$

$$B_{\ell_{i}}/C_{\ell_{i}} \qquad \frac{2}{\circ} \qquad \frac{2}{\circ} \qquad \frac{2}{\circ} \qquad \frac{2}{\circ} \qquad \text{if } \sigma_{i} \notin \text{Jord}(\tau)$$

$$D_{n} \qquad \frac{2}{\circ} \qquad \frac{2}{\circ} \qquad \frac{2}{\circ} \qquad \frac{2}{\circ} \qquad \frac{2}{\circ} \qquad \frac{2}{\circ}$$

$$a_{\sigma_{i}} = \sup_{3 \in \mathbb{N}} \{(\pi, a) \in \text{Jord}(\tau)\}$$

Graded Hecke algebra associated to cuspidal triple

Let H be a connected reductive complex group and $\mathfrak{t}=(L,\mathcal{C},\varepsilon)\in\mathcal{S}_H$. Let \mathfrak{h} the Lie algebra of H et $(\sigma,r_0)\in\mathfrak{h}\oplus\mathbb{C}$ a semi-simple element.

$$\{x \in \mathfrak{h}, \ [\sigma, x] = 2r_0 x\}.$$

 $(x, \eta), \ \eta \in \operatorname{Irr}(A_H(\sigma, x)).$

From $\mathfrak{t} = (L, \mathcal{C}, \varepsilon)$ Lusztig build a :

- based root datum $\mathcal{R} = (X, \Sigma, X^{\vee}, \Sigma^{\vee}, \Delta)$;
- a parameter function $\mu_{\mathfrak{t}}:\Delta\longrightarrow\mathbb{N}$;
- ullet a graded Hecke algebra $\mathbb{H}_{\mu_{\mathfrak{t}}}$.

Let $(\sigma, r_0) \in \mathfrak{h} \oplus \mathbb{C}$ a semisimple element.

Lusztig defined a \mathbb{H}_{μ_t} -module $\mathbb{M}(\sigma, r_0, x)$. Let $\eta \in \operatorname{Irr}(A_H(\sigma, x))$ and

$$\mathbb{M}(\sigma, r_0, x, \eta) = \operatorname{Hom}_{A_H(\sigma, x)}(\eta, \mathbb{M}(\sigma, r_0, x)).$$

Let $\operatorname{Irr}(A_H(x))_{\varepsilon}$ the irreducible representation $\widetilde{\eta}$ of $A_H(x)$ such that $(\mathcal{C}_x^H, \widetilde{\eta})$ is in the bloc defined by $(L, \mathcal{C}, \varepsilon)$.

We have $A_H(\sigma, x) \hookrightarrow A_H(x)$ and we denote by $Irr(A_H(\sigma, r_0, x))_{\varepsilon}$ the set of irreducible representation of $A_H(\sigma, r_0, x)$ which appears in the restriction to

Graded Hecke algebra associated to cuspidal triple

Theorem (Lusztig)

- ② All simple \mathbb{H}_{μ_t} -module on which r acts by r_0 is a quotient of $\overline{\mathbb{M}}(\sigma, r_0, x, \eta)$ of one $\mathbb{M}(\sigma, r_0, x, \eta)$, with $\eta \in \operatorname{Irr}(A_H(\sigma, r_0, x))_{\varepsilon}$
- **③** The set of simple $\mathbb{H}_{\mu_{\mathfrak{t}}}$ -modules with central character (σ, r_0) is in bijection with

$$\mathcal{M}_{(\sigma,r_0)} = \{(x,\eta)|x \in \mathfrak{h}, [\sigma,x] = 2r_0x, \eta \in \operatorname{Irr}(A_H(\sigma,x))_{\varepsilon}\}$$

- **4** A simple $\mathbb{H}_{\mu_{\mathfrak{t}}}$ -module $\overline{\mathbb{M}}(\sigma,r_0,x,\eta)$ est tempered, iff, there exists a \mathfrak{sl}_2 -triple (x,h,y) in \mathfrak{h} such that $[\sigma,x]=2r_0x,\ [\sigma,h]=0,\ [\sigma,y]=-2r_0y$ and $\sigma-r_0h$ is elliptic. In this case, $\overline{\mathbb{M}}(\sigma,r_0,x,\eta)=\mathbb{M}(\sigma,r_0,x,\eta)$
- **3** If C_x^H is a distinguished nilpotent orbit of H, then $\mathbb{M}(\sigma, r_0, x, \eta)$ is in discrete serie.

Graded Hecke algebra associated to cuspidal triple

H	L	partition	R	$R_{ m red}$	paramètres
Sp_{2n}	$(\mathbb{C}^{\times})^{\ell} \times \operatorname{Sp}_{2n'}$	$(1^\ell) \times (2,4,\ldots,2d)$	BC_ℓ	B_{ℓ}	2 2 2 2 2 2 4 + 1
	$(\mathbb{C}^{ imes})^n$	(1^n)	C_n	C_n	2 2 2
SO_N	$(\mathbb{C}^{\times})^{\ell} \times \mathrm{SO}_{N'}$	$(1^\ell)\times(1,3,\ldots,2d+1)$	B_{ℓ}	B_{ℓ}	2 2 2 2 2 2 4 + 2
SO_{2n+1}	$(\mathbb{C}^{ imes})^n$	(1^n)	B_n	B_n	2 2 22
SO_{2n}	$(\mathbb{C}^{ imes})^n$	(1")	D_n	D_n	2 2 2 2 2

Theorem (M.)

Let be G a split classical group. Let $\mathfrak{s} = [L, \sigma] \in \mathcal{B}(G)$ and the corresponding $j = [\widehat{L}, \varphi, \varepsilon] \in \mathcal{B}_e^{\mathrm{st}}(G)$. We have a bijection

$$\operatorname{Irr}(G)_{\mathfrak s} \simeq \Phi_e(G)_{\hat{\mathscr J}},$$

which induced a bijection

$$\operatorname{Irr}(G)_{\mathfrak{s},2} \simeq \Phi_e(G)_{j,2},$$

and

$$\operatorname{Irr}(G)_{\mathfrak{s},\operatorname{temp}} \simeq \Phi_e(G)_{j,\operatorname{bdd}}.$$

Theorem (M.)

The compatibility conjecture between the Langlands correspondence and the parabolic induction is true for the split classical groups.

Thank your for your attention.