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Bernstein decomposition

Let G be a connected reductive group over a p-adic field F. The set of
(equivalences classes of ) irreducibles representations of G is decomposed as

where s = [M, o] with M a Levi subgroup of G and o € Irr(M) cuspidal.
There is a map Sc : Irr(G) — Q(G) which associate to an irreducible
representation its cuspidal support.

Question

How to define the Bernstein decomposition for Langlands parameters ?
What is the notion of cuspidal Langlands parameter ? of cuspidal support ?
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Generalized Springer correspondence

Let H be a complex connected reductive group
For all x € H, we denote Ay(x) = Zx(x)/Zn(x)°.

N = {(Cﬁ,n)’ u € H unipotent,n € Irr(AH(u))}

We denote by Sy the set of (H-conjugacy classes of) triples (L,CL, &) with
@ L a Levi subgroup of H;
o CL an unipotent L-orbit ;
o ¢ € Irr(AL(v)) cuspidal.

e For all H, the triple (T,{1},1) € Sy, and Ny(T)/T is the Weyl

group of H;

H condition unipotent orbi An(u) €
GL,, n=1 O(l) {1} 1 )
szn 2n = d(d + 1) O(2d,2d72 ,,,,, 4,2) (Z/2Z)d E(Zz,') = (—1)’
SO, n=d? Owd-12d-3,.31) (Z/22)"  e(z2i-12211) = —1
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Let u € G be a unipotent element and ¢ € Irr(Ay(v)).
Let P = LU be a parabolic subgroup of H and v € L be a unipotent
element.
We define
Yu,v = {gZL(V)OU ’ 8 €< H7g71Ug € VU}

and )
dy,y = E(dim Zy(u) —dim Z(v)).

Then dim Y, , < d,,, and Zy(u) acts on Y, , by left translation. We
denote by S, , the permutation representation on the irreducibles
components of Y, , of dimension d, .

If P=B = TU, then

Yu71:{gB€H/B|gEH,g*1ug€U}:{B’EBIUEB/}ZBu-
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Definition
We say that ¢ is cuspidal, if and only if, for all proper parabolic subgroup
P = LU, for all unipotent v € L, we have Hom_(,)(¢; Suv) = 0.
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Generalized Springer correspondence

Ni = {(Cl’;’,n)‘ u € H unipotent,n € Irr(AH(u))}

Sh the set of (H-conjugacy classes of) triples (L,CL, €) with
@ L a Levi subgroup of H;
o CL an unipotent L-orbit;
o ¢ € Irr(A(v)) cuspidal.

We denote by W/ = Ny(L)/L.

Theorem (Lusztig,1984)
N~ |_| Irr(W/)

(L,C&,&‘)ESH

(€n) «— (L.CL e p)

Pl Ve
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Generalized Springer correspondence in a disconnected case

We suppose now that H is a reductive not necessarily connected
H acts by conjugation on /\/',,f,r0 and Spp.

Proposition (M.)

The generalized Springer correspondence for H® is H-équivariante, i.e.

h-(CH° n) «— h-(L°,CL & p).

Définition
We call quasi-Levi subgroup of H a subgroup of the form L = Zy(A),
where A is a torus contained in H°.

4

The neutral component of a quasi-Levi subgroup of H is a Levi subgroup of
He.
WH = Ny (A)/Zn(A) admits WH' = Nyo(L°)/L° as normal subgroup.
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Generalized Springer correspondence in a disconnected case

Let u € H® be unipotent et ¢ € Irr(Ap(u)). We say that ¢ is cuspidal if all
irreducibles subrepresentations of Ayo(u) which appear in the restrcition to
Ape(u) are cuspidals.

We denote by

N = {(Cf,n), u € H° unipotent,n € Irr(AH(u))}

Sy the set of (H-conjugacy classes of) triples (L,CL, <) avec
@ L quasi-Levi subgroup of H;
o CL a unipotent L-orbit;
o ¢ € Irr(AL(v)) cuspidal.

Theorem (M.)

For H= O,
N~ |_| Irr(WH)
(L,CLe)eSy

H L
(C.sm) «— (L,Cy e, p)
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Langlands correspondence

Let be F a p-adic field and G a split reductive connected group over F.
We denote by G the Langlands dual group of G, Wg the Weil group of F
and WE = Wr x SLy(C) the Weil-Deligne group.
Définition
A Langlands parameter of G is a continous morphism

¢: WL — G,

such that

® Plsi,(c) is algebraic;
o ¢(WE) consist of semisimple elements.

We denote by ®(G) the set of @-conjugation classes of Langlands
parameters of G.
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Langlands correspondence

We denote by Irr(G) the set of (smooth) irreducible representations of G.

Conjecture

There exists a finite to one map

recg : Irr(G) — 9(G).

Hence,
Ir(G) = | | Me(G).
peP(G)

There exists a bijection
My(G) ~ Irr(Sg),

avec Sqf =Zz(9)/ Za(8)° Z¢.
+ other proprieties.
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Langlands correspondence

The Langlands correspondence is proved for GL, by Harris et Taylor;
Henniart et Scholze, for SO, et Sp,,, by Arthur. We denote by

o(6)" = {(9.m)|6 € #(6), n € x(S§)}.

Then
rect : Irr(G) ~ (G) ™.

Properties of the Langlands correspondence : for all ¢ € ®(G), the
following are equivalent

@ one element in My (G) is in the discrete serie;

o all elements in MNy(G) are in the discrete serie;

@ ¢ € ®(G), (is discrete).
Supercuspidal ?
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Jordan bloc of discrete series

Let G be one of the split groups Sp,,(F) or SO,(F).
For all unitary irreducible supercuspidal representation m de GL4_(F) and
for all integer a > 1, the induced representation

a—1 a—3 1—a
w |2 xw |2 x...x7| |7,

admit a unique irreducible subrepresentation of GL,g4, (F) : St(m, a).
Let 7 be an irreducible discrete serie of G. We denote by

Jord(7) = {(m, a)}

with 7 an unitary irreducible supercuspidal representation of a GLg4_(F)
and a > 1 such that there exists an integer a’ which verify :

a=a mod?2
St(m,a) x T irréductible
St(m,a’) x 7  réductible
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Jordan bloc of discrete series

Let p € ®(G) a discrete parameter. The decomposition of Std o ¢, where
Std: G = GLn(C) is :

Stdquz@@w&Sa.

w€ly a€Jr

We call Jordan bloc of ¢ and we denote by
Jord(p) = {(m, a)|m € lp,a € Jr}.
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Jordan bloc of discrete series

Jord(y) without hole (or jump)
< ((m,a) € Jord(p) et a > 3 = (m,a — 2) € Jord(y)).
Az(¢p) is generated by

Zr s pour (7, a) € Jord(p) et a pair
Zr aZzy pour (m,a),(m, a") € Jord(y) without parity condition on a, a’

(7, a), (m,a") € Jord(y), with &’ < a, consecutive < for all
beld+1,a—1], (m,b) & Jord(y).
ar min the smallest integer a > 1 such that (7, a) € Jord(yp).

Définition

A character ¢ of Az(y) is alternate if for all (7, a), (7, a’) € Jord(y)
consecutive, £(zr 2z ») = —1 and if for all (7, ax min) € Jord(yp) with
ar,min €venn, e(zr s, ) = —1.
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Jordan bloc of discrete series

Theorem (Moeglin)

The Langlands classification of discrete series of G by Arthur induce a
bijection between the set of irreducible supercuspidal representation of G
and the set of pairs (¢, €) such that Jord(y) is without holes and ¢ is
alternate; the bijection 7 — (¢, €) is defined by Jord(y) = Jord(7) et

e =¢,.
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Stable Bernstein centre, after Haines

Let G be a split connected reductive p-adic group.
(M, \) with M a Levi subgroup of G et A : Wg — M discrete.
Unramified cocharacters X(M) = {x : Wg/lr — Z2 } Z2.

Definition
O the cuspidal L—dataA(I\ﬁl,)Ll) and (Mg,Az) are associate if there exists
g € G such that My = My and A\ =8\
@ the cuspidal L-data (1\771,)\1) and (I\712,)\2) are inertially equivalent if
there exists g € G and x € X(M>) such that
ng = M2 and )\2 == g)\lx.

We denote by Q(G)st (resp. B(G)st) the equivalence classes for relation 1
(resp. 2).
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Stable Bernstein centre, after Haines
Let i = [M, A] € B(G)s. We can define the torus

T ={(\) g x € X(M)}
and the finite group
W, = {W € Nx(M)/M, 3y € X(M), (")) = (AX)M} .

We have
QG ~ || T/

LEB(G)st

Définition
We call the stable Bernstein centre of G and we denote by 3(G) the ring
of regulars functions on Q(G)g :

3(G)st = C[Q(G)st]-
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Stable Bernstein centre, after Haines
Let ¢ : Wg x SLp(C) — Ga Langlands parameter.

~

>‘¢:WF — G

1/2 '
C o )

We denote by I\7I)\¢ a Levi subgroup of G which contains minimally the
image of \,.

fﬁst: o(G) — P(G)st
¢ — (MA¢7)‘¢)§

)

®(G)= || ®(G)r where ®(G)y={¢ € d(G), Ku(e) = (M,\)}

(M 2)EQ(G)st

®(G)= || ©(G):, where &(G);={p € d(G), %ul(0) € i}.

LEB( G)st
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Compatibility of the Langlands correspondence with the

parabolic induction

Compatibility conjecture

Let P = LU be a parabolic subgroup of G, o € Irr(L) supercuspidal and 7

an irreducible subquotient of i$ (o).
° ¢5: Wf — L Langlands parameter of o ;

° ¢r: Wf — G Langlands parameter ofr ;
Then’ ()\¢J)6 = (>\¢7r)a

Let i = [M, ] € B(G)«.

N(G)= || NG

)\XEE/WL'
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Compatibility of the Langlands correspondence with the
parabolic induction

Proposition

The compatibility conjecture is equivalent to that for all Levi subgroupM of
G and all )\ Wg — M discrete, we have :

MA(G) = |_| |_| |_| TH(ify(r))

ZGE( G))\ ¢€¢(L)>\,cusp 7r€|_|<;S(L)<:usp
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Enhanced Bernstein centre
We still suppose that G is a split connected reductive p-adic group and let
L be a Levi subgroup of G.
Définition (M.)
Let o € ®(L). We say that ¢ is cuspidal when
@ ¢ is discrete;
° Irr(Sé)cuSp is not empty.

An enhanced Langlands parameter is cuspidal (¢,¢) € ®(L)* when ¢ is
cuspidal and ¢ € Irr(Sé)Cusp.

Conjecture (M.)

Let ¢ € ®(L). The L-packet I, (L) contains supercuspidal representations,
if and only if, ¢ is a cuspidal Langlands parameter. Moreover, the
supercuspidal representations in I,(L) are parametrized by Irr(Sé)Cusp,
Dl C e &2 Irr(Ssé)cusp.

v
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Enhanced Bernstein centre

Proposition (M.)

Let A: W — M a discrete parameter.
If » € d(M) is a Langlands parameter of M with infinitesimal cocharacter

A, then ¢ = A\ _
MA(M) = Nx(M).

Moreover, all representations of Sy(M) are cuspidal, i.e.

Irr(SY) = Trr(SV) cusp-
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Enhanced Bernstein centre

Proposition (M.)

For the linear group, symplectic or special orthogonal split group, the
cuspidal Langlands parameters are :

@ for GL,(F),
v : Wg — GL,(C), irréductible;

@ for SO2,41(F),
dr dr
v=P PRSP PR 1, Vr € lo, dr €N, Vr € s, dr € N*;
w€lp a=1 w€ls a=1
@ for Sp,,(F) ou SO2,(F),

drr dx
o=P PRSP PrRS.1 Vr€lo,dr €N, V1 € Is,d; €N.

m€ls a=1 w€lp a=1

<
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Proposition

Moreover, after the theorem of Harris-Taylor et Henniart for GL and the
theorem of Moeglin, the supercuspidal representations of G are
parametrized by (p,¢) with ¢ a cuspidal Langlands parameter of G and
NS Irr(Sg)cusp. In other words, the conjecture on the parametrization of
supercuspidal representations is true.
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Enhanced Bernstein centre

Let G be a split reductive p-adic group.
(L, ¢, ) with L a Levi subgroup of G and (p,¢) € ®(L)* cuspidal.
Unramified cocharacters X(L) = {x : Wr/Ir — ZZO} ~ Z2.

Définition
Q the cuspidaIAL-data (Zl, gﬁl,al)Aand (Zg, ©2,€2) are associate if there
exists g € G such that L3 = Ly, 8¢1 = o et €5 ~ep;

@ the cuspidal L-data (Zl,(p1,€1) and (ZQ,(p2,€2) are inertially
equivalente if there existsg € Getye %(Lz) such that
ng = L2 8p1 = o) et 51 ~go;

We denote by Q(G)Z (resp. B(G)Z) the equivalences classes for relation 1
(resp. 2).
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Enhanced Bernstein centre

Let j= [L, €] € B(G)Z. We can define the torus

-~

Tj=lex)p: x € X(L)}
and the finite group
Wy = {w e Ng(D)/L.3x € X(D), () = (9X)z } -
We have

ek~ || Ty

JEBG)
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Enhanced Bernstein centre

We have the following map

®(G) — A6
¢ — (MAqs?)\d))é,

6N — AGK
(I—a%g)a — (M/\ga:/\tp)a,

o6y — A6,
(¢,W) — (L7Wa€)@

777
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Enhanced Bernstein centre

Conjecture

Let o : WE — Lbea cuspidal Langlands parameter of L. Assume the
conjecture (on the parametrization of supercuspidal) true. If o € T, (L)cusp

is parametrized by ¢ € Irr(SgL,)cusp, then if we denote by

s =[L,0]c, J= [L, ¢, ], we have isomorphism :

T5—>7; W5—>W/-

X — X 0w — W

b

such that forall y € T;, we W, :
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Cuspidal support of an enhanced Langlands parameter
Theorem (M.)

Let G be a split reductive p-adic group. We can define a map

(¢7 77) = (L7 30750)§a
with
o Lalevi subgroup of G:
@ ¢ € ®(L)a cuspidal Langlands parameter of L;
@ an irreducible representation gq of AZZ(‘P\WF)O(SO‘SLZ(C))'
The Langlands parameters ¢ and ¢ have the same infinitesimal cocharacter

and for all w € WE, we have

Ye(w) = 6(1, d)/p(1, du) € Z2,

] w 1/2
with d,, = <| | |W‘_1/2>
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Cuspidal support of an enhanced Langlands parameter

Theorem (M.)
Let G be one of Sp,,(F) ou SO,(F). We can define a map

£: 06 — Qo)
(o) — (Lpe)

Moreover, the fiber are parametrized by irreducible representations of
Nz (1 wpxe) (AT Zp(2 1w Xe )

where ¢ runs over the correcting cocharacter of ¢ in G.
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Equivalence of categories

Let G be Spy,(F) or SO,(F), M = GL} x ... x GLY x Gy Levi
subgroup of G and

c=0X..KoX.. Ko, X...Xo, X,
S—— N———
A e
with o; unitary irreducible supercuspidal representation of GLg4, and 7

supercuspidal irreducible representation of G,y .
We denote by s = [M, o]¢. Heiermann associate to each s :

@ a based root datum R = (X5, Ls, XV, LY, As);
@ a finite group Rs;
@ parameters functions (As, A})

@ an affine Hecke algebra H.
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Equivalence of categories

Theorem (Heiermann)
The category Rep(G)s is equivalent to the category of right
Hs x C[Rs]-modules.

This equivalence preserve the objects of the discrete serie and tempered
objects.

o We have X, = | |I_; ¥;;

o If ¥, is type A, C, D or (type B for long roots), o € £; N A,
As(@) =1;

o If X, is type B, for the short root A\s(aj) = x; + x!, Ai(ai) = x; — X,
with x; the unique positive real number x such that ;| |* x 7
reducible (same for x! with ¢;().
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Parameter of the graded Hecke algebra obtained by H;

2 2 2 2 2
A-1 & O 0—0
2 2 2 g&;’ 1 ifo; e Jord(7)

22 ifg; ¢ Jord(r)

a,, = sup{(m, a) € Jord(r)}
aeN
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Graded Hecke algebra associated to cuspidal triple
Let H be a connected reductive complex group and t = (L,C,¢) € Sy.
Let b the Lie algebra of H et (0, ) € h & C a semi-simple element.

{x €, [o,x] =2rx}.
(x,n), n € Irr(An(o, x)).
From t = (L,C, ) Lusztig build a :
@ based root datum R = (X, L, XV, TV A);
@ a parameter function p : A — N;;
@ a graded Hecke algebra H),,.

Let (0,rn) € h & C a semisimple element.
Lusztig defined a H,,-module M(o, ro, x). Let 1 € Irr(Ay(o, x)) and
M(U7 n, X, 77) = HomAH(U,X)(n)M(Ua rO,X)).
Let Irr(Ap(x))e the irreducible representation 77 of Ay(x) such that
(CH.7) is in the bloc defined by (L,C,¢).
We have Ay(o, x) < An(x) and we denote by Irr(Ay(o, ro, x))e the set of
irreducible representation of Ay(o, ro, x) which appears in the restriction to
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Graded Hecke algebra associated to cuspidal triple

Theorem (Lusztig)
Q@ M(o, ro, x,m) # 0, iff, n € Irr(An(o, ro, x))e
@ All simple H,,-module on which r acts by rg is a quotient of
M(o, ro, x,n) of one M(a, ro, x,n), with i € Irr(Ay(o, ry, x))e

© The set of simple H,,,-modules with central character (o, rg) is in
bijection with

Mo.r) = {(x,m)|x € b, [0, x] = 2rox, 1 € Irr(Ap(0, X))}

Q@ A simple H,-module M(a, ro, x,n) est tempered, iff, there exists a
slp-triple (x, h,y) in b such that
[0,x] =2rox, [o,h] =0, [0,y] = —2r9y and o — rph is elliptic. In this
case, M(o, ro, x,n) = M(a, ro, x, )

@ If ! is a distinguished nilpotent orbit of H, then M(a, ro, x,7) is in
discrete serie.

v
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Graded Hecke algebra associated to cuspidal triple

H L partition R Rred paramétres
Sp.,  (C*)*xSp,,  (1°) x(2,4,...,2d) BC B 2 2 2 22d+41
(c*y" ) G G 32 2 2 3% 2
SOn  (C*)*xSOn (19)x(1,3,...,2d+1) B, B 2 2 2 22d42
SO2n11 (c)" m B, B, 2 2 2.2 2
2
S0z, (C¥) (17) D, Dy 3 2 3. %<Z
2
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Theorem (M.)

Let be G a split classical group. Let s = [L, 0] € B(G) and the
correspondingf': [L, ¢, €] € BS(G). We have a bijection

Irr(G)s ~ CDe(G)i',
which induced a bijection
Irr(G)s 2 ¢e(G)ﬁ"2,

and
Irr(G)s,temp ~ (De(G)a',bdd

Theorem (M.)

The compatibility conjecture between the Langlands correspondence and
the parabolic induction is true for the split classical groups.

v
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Thank your for your attention.
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