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CONJECTURE FOR SPLIT CLASSICAL GROUPS
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Abstract. In this paper we prove the Aubert-Baum-Plymen-Solleveld
conjecture for the split classical groups and make the relation to the
Langlands correspondence. To do this, we review the notion of cuspi-
dality for enhanced Langlands parameters and also review the notion of
cuspidal support for enhanced Langlands parameters for split classical
groups, both introduced by the author in earlier work.
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Introduction

Let G be a connected reductive p-adic group and Irr(G) be the set of
(classes of) smooth irreducible complex representations of G. On one hand,
the Bernstein decomposition gives a way to study Irr(G) in terms of para-
bolic induction. On the other hand, the Langlands correspondence predicts
a decomposition of Irr(G) into finite subsets. It is natural to ask what is
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2 A. MOUSSAOUI

the relation between these two decompositions? We are particularly inter-
ested in the question of what are the Langlands parameters for supercuspidal
representations (see Definition 2.4) and how to define cuspidal support for
(enhanced) Langlands parameters (see Theorem 2.7).

In this paper we prove the Aubert-Baum-Plymen-Solleveld conjecture for
the split classical groups. This conjecture was also proved by Solleveld in
[Sol12] using different arguments, which are discussed in Section 3.1. How-
ever, in that proof there is no link with the Langlands correspondence. The
proof presented here makes clear the relation between the ABPS conjec-
ture and the Langlands correspondence. Roughly speaking, this is done by
studying the link between the Langlands correspondence and the parabolic
induction. This requires a quick overview of [Mou15]. In fact, the main mo-
tivation for [Mou15] was the study of the Aubert-Baum-Plymen-Solleveld
conjecture. In particular, we note that our constructions fit naturally with
the work of Haines [Hai14] on the stable Bernstein centre, especially Conjec-
ture 2.2, regarding the compatibility of parabolic induction and the Lang-
lands correspondence.

In order to state the main result of this paper, we briefly review the
Aubert-Baum-Plymen-Solleveld conjecture, beginning with what is com-
monly referred to as an extended quotient.

Let T be a complex affine variety and Γ be a finite group acting on T .
For all t ∈ T , let Γt = {γ ∈ Γ | γ · t = t} be the stabilizer of t in Γ. The
group Γ acts on

Y = {(t, ρ) | t ∈ T, ρ ∈ Irr(Γt)}

by

α · (t, ρ) = (α · t, α∗ρ), α ∈ Γ, (t, ρ) ∈ Y,

where α∗ρ ∈ Irr(Γα·t) is defined by, (α∗ρ)(γ) = ρ(αγα−1), for all γ ∈ Γα·t.
The spectral extended quotient of T by Γ is the quotient Y/Γ and it is denoted

by T � Γ̂. Note that the projection map on the first coordinate Y −→ T is

Γ-equivariant and this defines a projection map T � Γ̂ −→ T/Γ.
We now recall the Bernstein decomposition; see [Ber84, 2.10,2.13] and

[Ren10, VI.7.1,VI.7.2,VI.10.3] for more detail. Let G be a connected re-
ductive group defined and splits over a p-adic field. We denote by iGP and
rGP the parabolic induction and Jacquet functors, respectively. Let π be an
irreducible smooth representation of G. Let P be a parabolic subgroup of G
with Levi factor M such that rGP (π) 6= 0 and minimal for this property. Let
σ be an irreducible subquotient of rGP (π). Then σ is an irreducible super-
cuspidal representation of M . Moreover if (M ′, σ′) is an other pair which
arises in the same way for another parabolic subgroup P ′, then there exists
g ∈ G such that M ′ = gM and σ ' gσ′. The G-conjugacy class of the
pair (M,σ) is called the cuspidal support of π. There are two equivalence
relations on the set of pairs (M,σ) where M is a Levi subgroup of G and
σ is an irreducible supercuspidal representation of M : conjugation by G on
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these pairs and conjugation by G up to an unramified character. More pre-
cisely, if (M1, σ1) and (M2, σ2) are two such pairs, then (M1, σ1) is said to
be associated (resp. inertially equivalent) to (M2, σ2) if there exists g ∈ G
such that gM1 = M2 and σg1 ' σ2 (resp. there exist g ∈ G and an un-
ramified character χ2 ∈ X (M2) such that gM1 = M2 and σg1 ' σ2χ2). Let
Ω(G) and B(G) be the set of associated equivalence classes (resp. inertial
equivalence classes) of pairs (M,σ) where M is a Levi subgroup of G and
σ is an irreducible supercuspidal representation of M . Because the group
X (M) of unramified characters of M has a torus structure, we can associate
the following to each s = [M,σ] ∈ B(G):

• a torus Ts = {σχ, χ ∈ X (M)};
• a finite group Ws = {w ∈ NG(M)/M | ∃χ ∈ X (M), σw ' σ ⊗ χ};
• an action of Ws on Ts.

The projection map Ω(G) � B(G) allows us to identify the set of cuspidal
support which have the same image s ∈ B(G) to the quotient Ts/Ws. The
Bernstein decomposition of the set of irreducible representations of G is a
partition of Irr(G) indexed by B(G):

Irr(G) =
⊔

s∈B(G)

Irr(G)s.

Moreover, the cuspidal support map restrict on each pieces to a map Sc :
Irr(G)s −→ Ts/Ws. The benefit of this extended quotient is the following
conjecture, which predicts that we can recover Irr(G)s from the three data
associated to s described above.

Conjecture (Aubert-Baum-Plymen-Solleveld). For each s ∈ B(G), there
exists a bijection

µs : Irr(G)s −→ Ts � Ŵs.

In general the following diagram is not commutative

Irr(G)s Ts � Ŵs

Ts/Ws

Sc

µs

ps

but by precomposing the projection on the right with certain cocharacters of
Ts, called correcting cocharacters, then this diagram is commutative.

In [Aub+14a, 4.11], in the case where the Levi subgroup defining the in-
ertial pair is a maximal torus of a split group, the authors show that the cor-

recting cocharacter associated to [t, ρ] ∈ Ts � Ŵs is φπ(1,diag(t, t−1)) where
π = µ−1

s [t, ρ] and φπ is the Langlands parameter of the representation π. In
this paper, if s = [M,σ] we show a more general formula for the correcting

cocharacter of [t, ρ] ∈ Ts�Ŵs, namely: φπ(1,diag(t, t−1))/φσ(1, diag(t, t−1))
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where π = µ−1
s [t, ρ], φπ and φσ are the Langlands parameters of the repre-

sentations π and σ respectively.
Here we prove the ABPS conjecture for split classical groups by estab-

lishing a Galois version of the ABPS conjecture, obtained by replacing the
representations with their (enhanced) Langlands parameters. To do this
we use [Mou15] which shows how to convert the supercuspidality of the
representation into a condition on the corresponding (enhanced) Langlands
parameter.

The article is organized as follows. In Section 1, we review the generalized
Springer correspondence which will be a tool for the next steps. Here we
give the examples of GLn and Sp6. In Section 2 we briefly recall the local
Langlands correspondence for split groups, paying special attention to the
case of split classical groups. Then we recall the notion of cuspidal enhanced
Langlands parameters from [Mou15] and we explain how to construct the
cuspidal support of an enhanced Langlands parameter in the case of split
classical groups. Finally, in Section 3.3, after finding the predicted correct-
ing cocharacters, we prove the ABPS conjecture for split classical groups.
We give a concrete example to illustrate it in the case of Sp4(F ).

1. Springer correspondence

Let H be a complex reductive algebraic group and consider the set

UeH = {(CHu , η) | u ∈ H unipotent, η ∈ Irr(AH(u))},
where CHu denotes the H-conjugacy class of u and AH(u) = ZH(u)/ZH(u)◦

with ZH(u) the centralizer of u in H. We denote the Weyl group of H by
WH = NH(T )/T with T a maximal torus of H. Suppose from here that H
is connected.

Example 1.1. Let n > 1 be an integer and consider the group H = GLn(C).
For any element u ∈ H, the group AH(u) is trivial. A maximal torus T of
H is the group of diagonal matrices and the Weyl group of H is WH ' Sn,
the symmetric group over n letters. Moreover, by the Jordan classification,
the set UeH is parametrized by P(n), the set of partitions of n, as follows :

P(n) −→ UeH

(p1, . . . , pr) 7−→


Jp1

. . .

Jpr

 , triv


with

Jd =


1 1

1 1
. . .

. . .

1 1
1

 ∈ GLd(C)
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By the theory of Young diagrams, irreducible representations of WH ' Sn

are parametrized by P(n). This gives a bijection between Irr(WH) and UeH .

1.1. Ordinary Springer correspondence. In general, when H is differ-
ent from GLn, we do not have a bijection between Irr(WH) and UeH but
there is an embedding Irr(WH) ↪→ UeH ; this embedding is called the ordi-
nary Springer correspondence. It was studied by Springer during the ‘70s in
[Spr78]. The ordinary Springer correspondence for H relates two different
objects in nature: irreducible representations of the Weyl group of H and
pairs (CHu , η), where CHu is a unipotent orbit in H and η is an irreducible
representation of AH(u). The Springer correspondence can be described
combinatorially.

Example 1.2. Recall that the unipotent classes of H = Sp2n(C) are in
bijection with partitions of 2n for which the odd parts have even multiplicity.
The Weyl group WH of H is isomorphic to Snn (Z/2Z)n and its irreducible
representations are in bijection with the set of bipartitions of n, i.e., the pairs
(α, β) where α, β are partitions (perhaps trivial) such that |α|+ |β| = n. For
instance, the trivial representation corresponds to the partition (n, 0) while
the sign representation corresponds to the partition (0, 1n). See Table 1 for
the case H = Sp6(C).

u AH(u) Irr(AH(u)) Irr(WH)

(6) Z/2Z 1 ρ(3,0)

(6) Z/2Z ζ
(4, 2) (Z/2Z)2 1� 1 ρ(2,1)

(4, 2) (Z/2Z)2 ζ � ζ ρ(0,3)

(4, 2) (Z/2Z)2 1� ζ
(4, 2) (Z/2Z)2 ζ � 1
(4, 12) Z/2Z 1 ρ((2,1),0)

(4, 12) Z/2Z ζ
(32) {1} 1 ρ(1,2)

(23) Z/2Z 1 ρ(12,1)

(23) Z/2Z ζ
(22, 12) Z/2Z 1 ρ(1,12)

(22, 12) Z/2Z ζ ρ(0,(2,1))

(2, 14) Z/2Z 1 ρ(13,0)

(2, 14) Z/2Z ζ
(16) {1} 1 ρ(0,13)

Table 1. Spinger correspondence for Sp6(C)

1.2. Generalized Springer correspondence. One can ask how to de-
scribe elements in UeH which are not in the image of the ordinary Springer
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correspondence Irr(WH) ↪→ UeH . This was completly established by Lusztig
in [Lus84] and called the generalized Springer correspondence, as we briefly
recall here.

In order to describe the missing pieces, Lusztig defined fundamental blocks,
called cuspidal triples, consisting of H-conjugacy classes of triples (L, CLv , ε)
where L is a Levi subgroup of H, v is a unipotent element of L and ε ∈
Irr(AL(v)) is an irreducible cuspidal representation of AL(v). To each
(CHu , η) ∈ UeH , he associated a unique triple (L, CLv , ε); see [Lus84, 6.3,6.4].
All elements associated to a fixed triple (L, CLv , ε) are parametrized by Irr(WL

H)
with WL

H = NH(L)/L [Lus84, 6.4].
The notion of cuspidal representation of AH(u) was introduced by Lusztig

in [Lus84, 2.4,6.2] and involves geometric objects. We now review this
notion as it appears in [Lus84]. Let u ∈ H be a unipotent element and
ε ∈ Irr(AH(u)). Let P = MN be a parabolic subgroup of H and v ∈M be
a unipotent element. Set

YP,u,v =
{
hZM (v)◦N ∈ H/ZM (v)◦N | h ∈ H,h−1uh ∈ vN

}
and

du,v =
1

2
(dimZH(u)− dimZM (v)).

Then dimYP,u,v 6 du,v [Lus84, 1.1]. The group ZH(u) acts on YP,u,v by
left translation; this action factorizes to an action of AH(u) on the set of
irreducible components of YP,u,v of dimension du,v. Let Su,v be the resulting
representation of AH(u). Then ε is a cuspidal representation of AH(u) if for
all proper parabolic subgroups P = MN of H and for all unipotent v ∈M ,
we have

HomAH(u)(ε, Su,v) = 0.

Example 1.3. If P = B = TU , then

YB,u,1 =
{
gB ∈ H/B | g ∈ H, g−1ug ∈ U

}
=
{
B′ ∈ B | u ∈ B′

}
= Bu,

which is the Springer fiber of u. It was through this variety that Springer
established his original correspondence.

We may now state the generalized Springer correspondence. Let SH be
the set of H-conjugacy classes of cuspidal triples (L, CLv , ε) where

• L is a Levi subgroup of H;
• v ∈ L is a unipotent element of L;
• ε ∈ Irr(AL(v)) is a cuspidal representation.

Theorem 1.4 (Lusztig, [Lus84, 6.5,9.2]). Let H be a connected complex
algebraic group. There is a surjective map

ΨH : UeH −→ SH
and, for each t = [L, CLv , ε] ∈ SH , a natural bijection

Ψ−1
H (t)←→ Irr(NH(L)/L).
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For all t = [L, CLv , ε], setMt = Ψ−1
H (t). The map ΨH induces a decompo-

sition of UeH :

UeH =
⊔

t∈SH

Mt.

The ordinary Springer correspondence is recovered from the Springer corre-
spondence by restricting to the case t = (T, {1}, 1) where T is a maximal
torus of H. It is remarkable that the Levi subgroups L of H which appear
in the generalized Springer correspondence for H are very special. In par-
ticular, the relative Weyl group WH

L = NH(L)/L is a Coxeter group [Lus84,
9.2] which is not true in general. This property is an important fact.

Let us describe the triples (H, CHv , ε) ∈ SH for certain groups H.

• H = SLn(C). If (H, CHv , ε) ∈ SH then the unipotent element v cor-
responds to the partition (n), in which case AH(v) = Z/nZ. The
cuspidal representations ε which appear in (H, CHv , ε) ∈ SH are pre-
cisely those representations of AH(v) for which ker(ε) = {0}. In
particular, the cardinality of the set of the cuspidal representations
of AH(v) is φ(n) (Euler’s φ-function).
• H = GLn(C). If (H, CHv , ε) ∈ SH then necessarily n = 1, v = 1 and
AH(v) = {1}.
• H = Sp2n(C). If (H, CHv , ε) ∈ SH then n = d(d+1)

2 for some integer d
and v corresponds to the partition (2d, 2d−2, . . . , 4, 2), in which case

AH(v) =
∏d
i=1〈z2i〉 ' (Z/2Z)d. The representation ε which appears

in (H, CHv , ε) ∈ SH is precisely that for which ε(z2i) = (−1)i.
• H = SOn(C). If (H, CHv , ε) ∈ SH then n = d2 for some integer d and
v corresponds to the partition (2d−1, 2d−3, . . . , 3, 1), in which case

AH(v) =
∏d−1
i=1 〈z2i+1z2i−1〉 ' (Z/2Z)d−1 and ε(z2i+1z2i−1) = −1.

Example 1.5. We come back to our example of Sp6(C). The Levi subgroups
ofH = Sp6(C) are: Sp6(C), GL1(C)×Sp4(C), GL2(C)×Sp2(C), GL1(C)2×
Sp2(C), GL3(C), GL2(C) × GL1(C), GL1(C)3. The only Levi subgroups
of Sp6(C) which can appear in the Springer correspondence for Sp6(C) are
H = Sp6(C),M = GL1(C)2 × Sp2(C) and T = GL1(C)3. We have :

L NH(L)/L

Sp6(C) {1}
GL1(C)2 × Sp2(C) S2 n (Z/2Z)2

GL1(C)3 S3 n (Z/2Z)3

Table 2 describes the generalized Springer correspondence for Sp6(C);
the meaning of the u-symbols is given in [AA07, 3.2] or [Car93, 13.3] and
included here only for completeness.



8 A. MOUSSAOUI

u AH(u) Irr(AH(u)) u symbol L Irr(WL
H)

(6) Z/2Z 1
(

3
−
)

T ρ(3,0)

ζ
(−

3

)
M ρ′(2,0)

(4, 2) (Z/2Z)2

1� 1 ( 0 4
2 ) T ρ(2,1)

ζ � ζ ( 0 2
4 ) T ρ(0,3)

1� ζ ( 0
2 4 ) M ρ′(12,0)

ζ � 1
(

0 2 4
−
)

H 1

(4, 12) Z/2Z 1 ( 1 4
1 ) T ρ((2,1),0)

ζ ( 1
1 4 ) M ρ′(1,1)

(32) {1} 1 ( 0 3
3 ) T ρ(1,2)

(23) Z/2Z 1 ( 1 3
2 ) T ρ(12,1)

ζ ( 2
1 3 ) M ρ′(0,2)

(22, 12) Z/2Z 1 ( 0 2 5
2 4 ) T ρ(1,12)

ζ ( 0 2 4
2 5 ) T ρ(0,(2,1))

(2, 14) Z/2Z 1 ( 1 3 5
1 3 ) T ρ(13,0)

ζ ( 1 3
1 3 5 ) M ρ′(0,12)

(16) {1} 1 ( 0 2 4 6
2 4 6 ) T ρ(0,13)

Table 2. Generalized Springer correspondence for Sp6(C)

1.3. Generalized Springer correspondence for orthogonal groups.
Let n > 1 be an integer. In this paragraph H denotes the orthogonal group
On(C) or the group {(xi) ∈

∏m
i=1 Oni(C) |

∏m
i=1 det(xi) = 1} . Note that H

is disconnected. Here we specialize the definitions appearing in Section 1.2
to this case and also state the generalized Springer correspondence for in
this case. First, recall that

UeH =
{

(CHu , η) | u ∈ H unipotent, η ∈ Irr(AH(u))
}
.

Definition 1.6 ([Mou15, A.1]). A subgroup L of H is said to be a quasi-Levi
subgroup of H if there exists a torus A ⊂ H◦ such that L = ZH(A).

Example 1.7.

H L◦ L L/L◦ WH
L /W

H◦
L◦

O2n+1
∏k
i=1 GLni × SO2n′+1

∏k
i=1 GLni ×O2n′+1 Z/2Z {1} ni > 0, n′ > 0

O2n
∏k
i=1 GLni × SO2n′

∏k
i=1 GLni ×O2n′ Z/2Z {1} ni > 0, n′ > 2∏k

i=1 GLni
∏k
i=1 GLni {1} Z/2Z ni > 0

Table 3. Levi and quasi-Levi subgroups of orthogonal groups
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In the previous definition, since L◦ = ZH◦(A), then L◦ is Levi subgroup
of H◦. If L is a quasi-Levi subgroup of H and u ∈ H◦ is unipotent, then
WL◦
H◦ and AH◦(u) are normal subgroups of WL

H = NH(L)/L and AH(u),
respectively. If ε ∈ Irr(AH(u)), the restriction to the normal subgroup
AH◦(u) decomposes as

ε AH◦ (u) =
⊕
τ

τ ⊗ Cm,

where τ runs over some irreducible representations of AH◦(u) which are all
conjugate by AH(u) and m > 1 is an integer.

Definition 1.8 ([Mou15, A.3]). Let ε ∈ Irr(AH(u)). Then ε is a cuspidal
representation of AH(u) if the irreducible representations of AH◦(u) which
appear in the restriction of ε to AH◦(u) are cuspidal in the sense of Lusztig
(recalled in Section 1.2.)

Notice that in the restriction of ε to AH◦(u), all the representations of
AH◦(u) which appears are conjugate under AH(u). In particular, the cus-
pidality is preserved by such conjugation. As a consequence, one represen-
tation in the restriction is cuspidal if and only if all the representations are
cuspidal.

We may now state the generalized Springer correspondence for orthogonal
groups and some subgroups of orthogonal groups. Let SH be the set of H-
conjugacy classes of triples (L, CLv , ε) for which

• L is a quasi-Levi subgroup of H ;
• v ∈ L◦ is a unipotent element ;
• ε ∈ Irr(AL(v)) is a cuspidal representation.

Theorem 1.9. [Mou15, A4,A8] Assume H = {(xi) ∈
∏m
i=1 Oni(C) |

∏m
i=1 det(xi) = 1}

or H = On(C). There is a surjective map

ΨH : UeH −→ SH
and, for each t = [L, CLv , ε] ∈ SH , a natural bijection

Ψ−1
H (t)←→ Irr(NH(L)/L).

For all t = [L, CLv , ε], setMt = Ψ−1
H (t). The map ΨH induces a decompo-

sition of UeH :

UeH =
⊔

t∈SH

Mt.

2. Relation between the Langlands correspondence and the
Bernstein decomposition

2.1. Langlands correspondence. Let F be a p-adic field and G be (the
F -points of) a split connected reductive group over F . Let WF (resp. W ′F =

WF ×SL2(C)) be the Weil (resp. Weil-Deligne) group of F . We denote by Ĝ
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the connected complex reductive group dual of G. A Langlands parameter
for G is a group homorphism

φ : W ′F −→ Ĝ,

such that:

• the restriction to SL2(C) is a morphism of algebraic groups;
• the restriction to WF is continuous and φ(WF ) consists of semi-

simple elements.

If we denote by Φ(G) the set of Ĝ-conjugacy classes of Langlands parameters
for G. The local Langlands correspondence predicts the existence of a finite-
to-one map

recG : Irr(G) −→ Φ(G),

which satisfies certain properties. To each φ ∈ Φ(G), one can expect to
attach a L-packet Πφ(G) which is a finite set of irreducible representations
of G associated to φ. Conjecturally, this set is parametrized by the irre-
ducible representations of a finite group SGφ which is a quotient of A

Ĝ
(φ),

the component group of the centralizer in Ĝ of φ(W ′F ). Hence, if we denote
by

Φe(G) = {(φ, η) | φ ∈ Φ(G), η ∈ Irr(SGφ )},
the set of enhanced Langlands parameters, then conjecturally, we have a
bijection

Irr(G)←→ Φe(G),

and a decomposition

Irr(G) =
⊔

φ∈Φ(G)

Πφ(G).

2.2. Stable Bernstein centre. Recently, inspired by Vogan, in [Hai14]
Haines has defined the stable Bernstein centre and stated some conjectures
and gave some properties. In this paper we only consider the split case, but
Haines treats the general case. One can view the stable Bernstein centre as
an analogue of the Bernstein centre but for the Langlands parameters. It is
conjectured that the Langlands correspondence is compatible with parabolic
induction (see conjecture 2.2). Haines defines a cuspidal datum as a pair

(M̂, λ) with M̂ a Levi subgroup of Ĝ and λ : WF −→ M̂ a discrete Langlands
parameter for M (which means that the image of the parameter does not

factorize through a proper Levi subgroup of M̂). This plays the role of
cuspidal data for Langlands parameters. Also, he attaches to each Langlands

parameter of G a cuspidal datum and an inertial class. If M̂ is a Levi

subgroup of Ĝ, we denote by LX (M) =
{
χ : WF /IF −→ Z◦

M̂

}
. Then by

the Langlands correspondence for characters, LX (M) is in bijection with the
group X (M) of the unramified characters of M . Following Haines [Hai14,

5.3.3], consider two equivalence relations ∼Ω and ∼B on the pairs (M̂, λ)
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with M̂ a Levi subgroup of Ĝ and λ : WF −→ M̂ a discrete Langlands
parameter of M (trivial on SL2(C)) defined by:

(1) (M̂1, λ1) ∼Ω (M̂2, λ2) if and only if there exists g ∈ Ĝ such that
gM̂1 = M̂2 and gλ1 = λ2;

(2) (M̂1, λ1) ∼B (M̂2, λ2) if and only if there exists g ∈ Ĝ and χ ∈
LX (M2) such that gM̂1 = M̂2 and gλ1 = λ2χ2.

We denote by (λ)
M̂

the M̂ -conjugacy class of λ. Moreover, if we denote by

Ωst(G) (resp. Bst(G)) the equivalence classes for the relation ∼Ω (resp. ∼B)
then

Ωst(G) =
⊔

˚iffl∈Bst(G)

T˚iffl/W˚iffl,

with if ˚iffl = [M̂, λ] :

• T˚iffl = {(λχ)
M̂
, χ ∈ LX (M)} ' LX (M)/LX (M)(λ) and LX (M)(λ) =

{χ ∈ LX (M) | (λ)
M̂

= (λχ)
M̂
} ;

• W˚iffl = {w ∈ NĜ
(M̂)/M̂ | ∃χ ∈ LX (M), (wλ)

M̂
= (λχ)

M̂
}

To each Langlands parameter φ, one can define its infinitesimal character
λφ by defining for all w ∈WF

λφ(w) = φ(w, dw),

with dw = diag(|w|1/2, |w|−1/2).

Definition 2.1 (Haines [Hai14, 5.1]). Let M̂ be a Levi subgroup of Ĝ and

λ : WF −→ M̂ ↪→ Ĝ be a discrete Langlands parameter of M . Let ˚iffl =

[M̂, λ] ∈ Bst(G) the inertial class defined by (M̂, λ). Then the infinitesimal
packet of λ is

Π+
λ (G) =

⊔
φ∈Φ(G)
λφ=λ

Πφ(G),

and the inertial packet of λ is

Π+˚iffl (G) =
⊔

φ∈Φ(G)
λφ=λχ

χ∈LX (M)

Πφ(G) =
⊔

λχ∈T˚iffl/W˚iffl
Π+
λχ(G).

Conjecture 2.2 (Haines [Hai14, 5.2.2],Vogan). Let σ be an irreducible su-
percuspidal representation of M and π be an irreducible subquotient of the
parabolically induced representation iGP (σ) (where P is a parabolic subgroup
with Levi factor M). By the Langlands correspondence, let

φσ : W ′F −→ M̂,

and

φπ : W ′F −→ Ĝ,
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be the respective Langlands parameters of σ and π. By the embedding M̂ ↪→
Ĝ, one can view φσ as a Langlands parameter of G. Then it is expected that
we have the following equality :

(λφσ)
Ĝ

= (λφπ)
Ĝ
.

Currently, this conjecture is proved for GLn (essentially from the proof of
the Langlands correspondence see [Hai14, 5.2.3]) and for the split classical
groups by [Mou15, 4.7].

Example 2.3. Let G = GL2(F ), T ' (F×)2 be the maximal torus of G
consisting of diagonal matrices. Let | · | be the norm of F×. Consider the

irreducible supercuspidal representation σ = | · |1/2� | · |−1/2 of T . Then the
induced representation iGB(σ) has two irreducibles subquotients : π1 = 1GL2

the trivial representation of G and π2 = StGL2 the Steinberg representation
of G.

The Langlands parameters of σ, π1 and π2 are, respectively:

φσ : W ′F −→ T̂

(w, x) 7−→ diag(|w|1/2, |w|−1/2)

φπ1 : W ′F −→ Ĝ

(w, x) 7−→ diag(|w|1/2, |w|−1/2)

φπ2 : W ′F −→ Ĝ
(w, x) 7−→ x

Hence, we have λφσ = λφπ1
= λφπ2

.

2.3. Cuspidal enhanced Langlands parameter. Recall that we have
two decompositions of Irr(G), one by the Bernstein decomposition, the other
by the Langlands correspondence:

Irr(G) =
⊔

s∈B(G)

Irr(G)s =
⊔

φ∈Φ(G)

Πφ(G).

We want to compare the two decompositions, in particular, we want to de-
scribe the Langlands parameters of supercuspidal representations and the
cuspidal support map.

If ϕ ∈ Φ(G), recall that we have two groups A
Ĝ

(ϕ) and SGϕ defined by :

A
Ĝ

(ϕ) = Z
Ĝ

(ϕ)/Z
Ĝ

(ϕ)◦ and SGϕ = Z
Ĝ

(ϕ)/Z
Ĝ

(ϕ)◦ · Z
Ĝ
.

Conjecturally Irr(SGϕ ) parametrizes the L-packet Πϕ(G) and we have a sur-

jective map A
Ĝ

(ϕ) � SGϕ . We remark that if we denote HG
ϕ = Z

Ĝ
(ϕ WF

),
then we have the following equalities

Z
Ĝ

(ϕ) = Z
Ĝ

(ϕ WF
) ∩ Z

Ĝ
(ϕ SL2

) = ZZ
Ĝ

(ϕ WF
)(ϕ SL2

) = ZHG
ϕ

(ϕ SL2
).
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The group HG
ϕ is a reductive group and if uϕ = ϕ

((
1 1
0 1

))
, then A

Ĝ
(ϕ) =

AHG
ϕ

(ϕ SL2
) and AHG

ϕ
(ϕ SL2

) = AHG
ϕ

(uϕ). In general, HG
ϕ is a disconnected

group.

Definition 2.4 ([Mou15, 3.4]). Let ϕ ∈ Φ(G) be a discrete Langlands
parameter, ε ∈ Irr(SGϕ ) and ε̃ the pullback of ε to A

Ĝ
(ϕ) = AHG

ϕ
(uϕ). One

says that ε is a cuspidal representation of SGϕ when ε̃ is cuspidal with respect

to the group HG
ϕ and uϕ (see Definition 1.8). We denote by Irr(SGϕ )cusp the

set of irreducible cuspidal representations of SGϕ . Moreover, one says that ϕ

is a cuspidal parameter when Irr(SGϕ )cusp is not empty.

Conjecture 2.5 ([Mou15, 3.5]). Let ϕ ∈ Φ(G) be a Langlands parameter
of G. The L-packet Πϕ(G) contains supercuspidal representations of G if
and only if ϕ is a cuspidal parameter of G. Moreover, if ϕ is a cuspidal
parameter of G, the supercuspidal representations in Πϕ(G) are parametrized
by Irr(SGϕ )cusp; in other words, there is a bijection

Πϕ(G)cusp ←→ Irr(SGϕ )cusp.

In the following we describe the cuspidal Langlands parameters for GLn(F ), Sp2n(F )
and SOn(F ). We denote by Sa the irreducible representation of dimension a
of SL2(C) and by IO (resp. IS) a set of irreducible representations of WF of
orthogonal type (resp. symplectic type). This means for IO (resp. IS) that
the image of π ∈ IO can be factorized through an orthogonal group (resp.
symplectic group).

Proposition 2.6 ([Mou15, 3.7]). We keep same notations as before. The
cuspidal Langlands parameters for G are :

• GLn(F ),

ϕ : WF −→ GLn(C), irreducible (or equivalently, discrete) ;

• SO2n+1(F ),

ϕ =
⊕
π∈IO

dπ⊕
a=1

π�S2a

⊕
π∈IS

dπ⊕
a=1

π�S2a−1, ∀π ∈ IO, dπ ∈ N, ∀π ∈ IS , dπ ∈ N∗;

• Sp2n(F ) or SO2n(F ),

ϕ =
⊕
π∈IS

dπ⊕
a=1

π�S2a

⊕
π∈IO

dπ⊕
a=1

π�S2a−1, ∀π ∈ IO, dπ ∈ N∗, ∀π ∈ IS , dπ ∈ N.

The conjecture 2.5 is true for GLn(F ), Sp2n(F ) and SOn(F ).

The last part follows by comparison the work of Harris-Taylor, Henniart
or Scholze for GLn(F ) and the work of Arthur and Mœglin for the classical
groups.
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2.4. Cuspidal support. The cuspidal support of an irreducible represen-
tation of G is a class (of G-conjugation) of a pair (L, σ) with L a Levi
subgroup of G and σ an irreducible supercuspidal representation of L. By
our previous conjecture 2.5, each such pair should correspond on the Galois

side to a triple (L̂, ϕ, ε) with L̂ a Levi subgroup of Ĝ, (ϕ, ε) ∈ Φe(L)cusp.

Recall that we denote LX (G) =
{
χ : WF /IF −→ Z◦

Ĝ

}
and that there is

a bijection between LX (G) and the unramified characters of G. Define two

relations ∼Ωe and ∼Be on the (set of) triples (L̂, ϕ, ε) as in the previous
paragraph :

(1) (L̂1, ϕ1, ε1) ∼Ωe (L̂2, ϕ2, ε2) if and only if there exists g ∈ Ĝ such

that gL̂1 = L̂2,
gϕ1 = ϕ2 and εg1 = ε2 ;

(2) (L̂1, ϕ1, ε1) ∼Be (L̂2, ϕ2, ε2) if and only if there exist g ∈ Ĝ and

χ ∈ LX (L2) such that gL̂1 = L̂2,
gϕ1 = ϕ2χ2 and εg1 = ε2 .

Denote by Ωst
e (G) (resp. by Bst

e (G)) the equivalence classes of the relation
∼Ωe (resp. ∼Be). As before, we have

Ωst
e (G) =

⊔
¯j∈Bst

e (G)

T¯j/W¯j,

with if ¯j = [L̂, ϕ, ε] :

• T¯j = {(ϕχ)
L̂
, χ ∈ LX (L)} ' LX (L)/LX (L)(ϕ) and LX (L)(ϕ) =

{χ ∈ LX (L) | (ϕ)
L̂

= (ϕχ)
L̂
} ;

• W¯j = {w ∈ N
Ĝ

(L̂)/L̂ | ∃χ ∈ LX (L), (wϕ)
L̂

= (ϕχ)
L̂
, εw ' ε}

We use the bijection between Irr(G) and Φe(G) given by the local Lang-
lands correspondence; we also use a bijection between Ω(G) and Ωst

e (G)
found by combining the local Langlands correspondence for supercuspidal
representations of the Levi subgroup of G with proposition 2.6 and conjec-
ture 2.5. It follows that there is a cuspidal support map Φe(G) → Ωst

e (G)
such that the following diagram is commutative:

Irr(G) Φe(G)

Ω(G) Ωst
e (G)

Sc

receG

rece
Ω(G)

It would be more interesting to define the cuspidal support of (φ, η) ∈ Φe(G)
without assuming the local Langlands correspondence. We solve that prob-
lem in the following theorem.
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Theorem 2.7 ([Mou15, 3.20]). Let G be a split classical group, i.e. G =
Sp2n(F ) or G = SOn(F ). There exists a well-defined surjective map

S̀c : Φe(G) −→ Ωst
e (G)

(φ, η) 7−→ (L̂, ϕ, ε)

,

with the property that λφ = λϕ.

Proof. Here we give a sketch of the proof. Full details are available in
[Mou15, 3.20].

Recall the relation between the Langlands parameter in term of the Weil-
Deligne group W ′F and of the original Weil-Deligne group WDF = WF oC.
A Langlands parameter for G using the original Weil-Deligne group is a pair

(λ,N) with λ : WF −→ Ĝ an admissible morphism and N ∈ ĝ such that

∀w ∈WF , Ad(λ(w))N = |w|N.

To φ : W ′F −→ Ĝ one can associate a pair (λ,N) by

φ 7−→ (λφ, Nφ), ∀w ∈WF , λφ = φ(w, dw), Nφ = dφ SL2(C)

(
0 1
0 0

)
.

In the other direction, if (λ,N) is fixed, by the Jacobson-Morozov-Kostant

theorem, there exists a map γ : SL2(C) −→ Ĝ such that the differential of γ
sends ( 0 1

0 0 ) to N and for all t ∈ C× and γ(diag(t, t−1)) commutes with the
image of λ. Then, if we define for all w ∈WF , χφ by χφ(w) = γ(dw)−1 then
we set

φ(w, x) = λ(w)χφ(dw)γ(x).

Now we need a construction which involves the Springer correspondence.
We apply the Springer correspondence for the group HG

φ = Z
Ĝ

(φ WF
), the

unipotent class of uφ = φ (1, ( 1 1
0 1 )), or more precisely to the nilpotent class

of Nφ = dφ SL2(C)(
0 1
0 0 ) and the irreducible representation η̃ of AHG

φ
(uφ).

This defines a quasi-Levi subgroup H ′ of HG
φ and a nilpotent Nϕ element of

the Lie algebra of H ′.

Remember that we want to define a cuspidal triple (L̂, ϕ, ε) ∈ Ωst
e (G)

such that λϕ = λφ. Let A = Z◦H′ be the identity component of the centre

of H ′ and let L̂ = Z
Ĝ

(A). Then L̂ is a Levi subgroup of Ĝ. Since we
have fixed λ and we have obtained a nilpotent element Nϕ, we have to
check if this defines a Langlands parameter. By an adaptation of a result
of Lusztig, for all w ∈ WF , Ad(λ(w))Nϕ = |w|Nϕ. Then we can define ϕ :

W ′F −→ L̂ for all (w, x) ∈W ′F by ϕ(w, x) = λ(w)χϕ(w)γϕ(x). The nilpotent
orbits which carry cuspidal local systems are distinguished. Hence ϕ is a
discrete parameter of L. It is automatically cuspidal because the Springer
correspondence associates to ϕ a cuspidal representation of A

L̂
(ϕ). �

With reference to the proof above, note that, for all w ∈WF ,

φ(w, 1) = λ(w)χφ(w) and ϕ(w, 1) = λ(w)χϕ(w).
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Hence,

φ WF
= ϕ WF

χc, χc = χφ/χϕ.

We call χc a correcting cocharacter of ϕ in Ĝ. This notion is treated with
more detail in [Mou15, 3.16,3.17].

The following proposition described the fibers of the map S̀c : Φe(G) →
Ωst
e (G) appearing in Theorem 2.7.

Proposition 2.8. Let (L̂, ϕ, ε) ∈ Ωst
e (G) and χc1 , . . . , χcr be the correct-

ing cocharacter of ϕ in Ĝ. The fiber of (L̂, ϕ, ε) by S̀c are parametrized by

the irreducible representations of Irr(W
HG
ϕ WF

χci

HL
ϕ WF

χci

) such that the parameter φ

constructed as above satisfies χci = χφ/χϕ.

Proof. In the proof of Theorem 2.7, there is an additional object which is

needed to characterize (φ, η): the irreducible representation ρ ∈ Irr(W
HG
φ

HL
φ

)

given by the Springer correspondence. Now we see that if (φ, η) ∈ Φe(G)

has cuspidal support (L̂, ϕ, ε) then necessarily φ WF
= ϕ WF

χc with χc a

correcting cocharacter. The set of correcting cocharacters of ϕ in Ĝ is finite
(this can be deduced from [KL87, 5.4.c]). Let χc1 , . . . , χcr be the correcting

cocharacters of ϕ in Ĝ and for all i ∈ J1, rK, let µi = ϕ WF
χci . Let i ∈ J1, rK

and consider an irreducible representation ρ ∈ Irr(W
HG
µi

HL
µi

). By the Springer

correspondence for the group HG
µi , to ρ is associated a unipotent element

uµi,ρ ∈ HG
µi or, equivalently, a morphism γ(µi,ρ) : SL2(C) −→

(
HG
µi

)◦
and

an irreducible representation η of AHG
µi

(γ(µi,ρ)). Define φ(µi,ρ) = µiγ(µi,ρ) :

W ′F −→ Ĝ. We can assume after conjugation that φ(µi,ρ) is adapted to ϕ
(see [Mou15, 3.16]). Now we apply the previous construction to see that

(φ(µi,ρ), η) ∈ Φe(G) is associated to (L̂, ϕ, ε) if and only if λφ(µi,ρ)
= λϕ; in

other words if and only if χci = χφ(µi,ρ)
/χϕ. �

We saw at the beginning of Section 2.3 that we wanted to compare the
two decomposition :

Irr(G) =
⊔

s∈B(G)

Irr(G)s =
⊔

φ∈Φ(G)

Πφ(G).

For s = [L, σ] ∈ B(G), let S̊iffl(s) be the inertial pair [M̂λϕσ , λϕσ ] ∈ Bst
e (G),

where ϕσ : W ′F −→ Φ(L) is the Langlands parameter of σ and M̂λϕσ is a

Levi subgroup of Ĝ which contains minimally the image of λϕσ . We remark

that if ϕ SL2
6= 1 then L is not the dual of M̂λϕσ . We have proved the

following :
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Theorem 2.9. Let ˚iffl = [M̂, λ] ∈ Bst(G). Then we have :

Π+˚iffl (G) =
⊔

s∈B(G)

S̊iffl(s)=˚iffl

Irr(G)s.

This motivates the following conjecture.

Conjecture 2.10. Let G be a reductive connected split group over F . Let

˚iffl = [M̂, λ] ∈ Bst(G). Then, we have :

Π+˚iffl (G) =
⊔

s∈B(G)

S̊iffl(s)=˚iffl

Irr(G)s.

3. Aubert-Baum-Plymen-Solleveld conjecture for split
classical groups

3.1. Aubert-Baum-Plymen-Solleveld conjecture. In this section we
review the Aubert-Baum-Plymen-Solleveld conjecture as is stated in [Aub+14b,
15]. Let begin with the definitions of the so-called ”extended quotient”. Let
T be a complex affine variety and Γ be a finite group acting on T as auto-
morphisms of affine variety. For all t ∈ T , let Γt = {γ ∈ Γ | γ · t = t} be the
stabilizer of t in Γ. Consider

X = {(t, γ) ∈ T × Γ | γ · t = t} and Y = {(t, ρ) | t ∈ T, ρ ∈ Irr(Γt)}.
The groupe Γ acts on X and Y by :

α · (t, γ) = (α · t, αγα−1), and α · (t, ρ) = (α · t, α∗ρ), α ∈ Γ, (t, ρ) ∈ Y,
where α∗ρ ∈ Irr(Γα·t) is defined by, (α∗ρ)(γ) = ρ(αγα−1), for all γ ∈ Γα·t.
Remark that X has a natural structure of affine variety wheras there has not
a natural structure of variety on Y . In the following we recall the definitions
of the extended quotient as is stated in [Aub+14b, 11,13] but we give a
different names.

Definition 3.1 ([Aub+14b, 11,13]). The geometric extended quotient of T
by Γ is the quotient X/Γ and it is denoted by T � Γ. The spectral extended

quotient of T by Γ is the quotient Y/Γ and it is denoted by T � Γ̂.

Notice that in [Aub+14b] the authors state their conjecture with the
hypothesis that G is quasi-split. They have also a conjecture when G is non
necessarily quasi-split.

Conjecture 3.2 (Aubert-Baum-Plymen-Solleveld). Let G be a split con-
nected reductive p-adic group and s ∈ B(G) be an inertial pair for G. Then

(1) The cuspidal support map

Sc : Irr(G)s → Ts/Ws

is one-to-one if and only if the action of Ws on Ts is free.
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(2) There is a canonically defined commutative triangle

Ts � Ŵs

Irr(G)s Φ(G)s

µs

Moreover, the bijection µs should satisfies the following properties:

(i) The bijection µs maps Ks � Ŵs onto Irr(G)s,temp.
(ii) For many s ∈ B(G), the diagram

Irr(G)s Ts � Ŵs

Ts/Ws

Sc

µs

ps

does not commute.
(iii) There is an algebraic family

θz : Ts � Ŵs → Ts/Ws

of finite morphisms of algebraic varieties, with z ∈ C×, such that

θ1 = ps, θ√q = Sc ◦ µs
(iv) For each connected component c of the affine variety Ts �Ws, there is

a cocharacter
hc : C× −→ Ts

such that
θz[t, w] = Ws(h(z) · t) ∈ Ts/Ws,

for all [t, w] ∈ c.
Let Z1, . . . , Zr be the connected components of the affine variety Ts�Ws

and let h1, . . . , hr be the cocharacters associated. Let

νs : Xs → Ts �Ws

be the quotient map. Then the connected components X1, . . . , Xr of the
affine variety Xs can be chosen with
• µs(Xj) = Zj for j ∈ J1, rK.
• For each z ∈ C× the map mz : Xj → Ts/Ws, which is the compo-

sition

Xj → Ts → Ts/Ws

(t, w) 7→ hj(z)t 7→ Ws(hj(z)t)

makes the diagram

Xj Zj

Ts/Ws

mz

νs

θz
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• There exists a map of sets λ : Z1, . . . , Zr → V (called a labeling)
such that for any two points [t, w] and [t′, w′] of Ts �Ws: µs[t, w]
and µs[t

′, w′] are in the same L-packet if and only if θz[t, w] =
θz[t
′, w′]′ for all z ∈ C× and λ[t, w] = λ[t′, w′], where λ has been

lifted to a labelling of Ts �Ws in the evident way.

Aubert, Baum and Plymen proved the conjecture for the group G2 in
[ABP11]. Solleveld proved a version of this conjecture for extended Hecke
algebras in [Sol12] which, as a consequence, demonstrates the validity of the
ABPS for split classical groups. In a refined version stated in [Aub+15],
Aubert, Baum, Plymen and Solleveld prove the conjecture for the inner
forms of GLn and SLn using the relation with the Langlands correspondence.
Recently, in [Aub+14c], the authors prove the conjecture for the principal
series representations of split connected reductive groups, in relation with
the Langlands correspondence.

3.2. Galois version of ABPS conjecture. Let G be a split classical

group, i.e., G = Sp2n(F ) or G = SOn(F ). Let ¯j = [L̂, ϕ, ε] ∈ Bst
e (G).

Recall the we have defined a torus T¯j = {(ϕχ)
L̂
| χ ∈ LX (L)}. Since ϕ is

fixed and the multiplication by an unramified cocharacter does not affect
the SL2(C) part, we can identify T¯j with the restriction of ϕχ to WF for all

χ ∈ LX (L). Moreover, if (φ, η) ∈ Φe(G)¯j, we denote by ρ(φ,η) ∈ Irr(W
HG
φ

HL
φ

)

the irreducible representation attached by the Springer correspondence.

Theorem 3.3. Let G be a split classical group, i.e., G = Sp2n(F ) or G =

SOn(F ). Let ¯j = [L̂, ϕ, ε] ∈ Bst
e (G). Then the following map defines a

bijection :

µ¯j : Φe(G)¯j −→ T¯j � Ŵ¯j
(φ, η) 7−→ (φ WF

, ρ(φ,η))

.

Just before proving the theorem, notice that the theorem is true without
assuming the Langlands correspondence.

Proof. Let (φ, η) ∈ Φe(G)¯j. Then φ WF
= ϕ WF

χχc, where χ ∈ X (L) and

χc is the correcting cocharacter associated to (φ, η). Hence φ WF
is a twist

of ϕ WF
by an unramified cocharacter. Denote by A

L̂
= Z◦

L̂
and note that
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the stabilizer of φ WF
is

W¯j,φ = {w ∈ W¯j | (w(ϕχχc))L̂ = (ϕχχc)L̂}

' NZ
Ĝ

(ϕχχc)(AL̂)/Z
L̂

(ϕχχc)

= NZZ
Ĝ

(ϕ WF
χχc)(ϕ SL2

)(AL̂)/ZZ
L̂

(ϕ WF
χχc)(ϕ SL2

)

= NZZ
Ĝ

(φ WF
)(ϕ SL2

)(AL̂)/ZZ
L̂

(φ WF
)(ϕ SL2

)

' NZ
Ĝ

(φ WF
)(AL̂)/Z

L̂
(φ WF

)

= W
HG
φ

HL
φ

.

Here we use [Lus88, 2.6.b] and Table 3 in the penultimate line. This shows
that the map µ¯j is well defined. This map is surjective by Proposition 2.8

and its proof. Moreover, the bijectivity of the Springer correspondence for
the groups HG

ϕχ shows that this map is injective.
�

3.3. Proof of ABPS conjecture. Let G be a split classical group and

¯j = [L̂, ϕ, ε] ∈ Bst
e (G). Before proving the ABPS conjecture, let us introduce

some definitions and notations. We denote by Φ(G)2 (resp. Φ(G)temp) the
set of discrete (resp. tempered) Langlands parameters of G. By definition,

φ ∈ Φ(G)2 when φ(WF ) is not contained in a proper Levi subgroup of Ĝ
and φ ∈ Φ(G)temp when φ(WF ) is bounded. Similarly, we denote by Φe(G)2

(resp. Φe(G)temp) the set of enhanced Langlands parameters for which the
Langlands parameter is discrete (resp. tempered). Recall that in Sp2n(C)
or SOn(C) the unipotent classes are completely determined by their Jordan
decomposition, or in other words, by the partition associated (except for
SO2n(C) and when the partition has only even parts with even multiplic-
ities for which there are two distincts orbits). Because the group that we
will consider are products of complex symplectic groups, orthogonal groups
and general linear groups, the unipotent classes which arise in Z

Ĝ
(ϕ WF

χ)◦

are characterized by their partition. In particular, as χ runs over LX (L),
finitely many unipotent classes arise in this manner. Let CU be a system of
representative of unipotent classes of Z

Ĝ
(ϕ WF

χ)◦ when χ runs over LX (L).

We can assume that elements in CU are adapted to ϕ in Ĝ (see [Mou15,
3.16]). Let u ∈ CU and γu : SL2(C) −→ Z

Ĝ
(ϕ(IF ))◦ be such that γu is

adapted to ϕ SL2
. Define

cu : C× −→ Z◦
L̂

z 7−→ γu
(
z 0
0 z−1

)
/ϕ SL2

(
z 0
0 z−1

)
.

Proposition 3.4. Let G be a split classical group and suppose ¯j = [L̂, ϕ, ε] ∈
Bst
e (G). The map µ¯j satisfies the following properties.
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(1) The cuspidal support map

S̀c : Φe(G)¯j → T¯j/W¯j
is one-to-one if and only if the action of W¯j on T¯j is free.

(2) Let K¯j be the maximal compact torus in T¯j. Then the previous bi-

jection induces a bijection

K¯j � Ŵ¯j ←→ Φe(G)¯j ∩ Φe(G)temp.

(3) Let CU be a system of representatives of unipotent classes of Z
Ĝ

(ϕ WF
χ)◦,

when χ runs over LX (L). There exists a partition of T¯j�Ŵ¯j indexed

by CU with the following properties.

(i) T¯j�Ŵ¯j =
⊔
u∈CU

(
T¯j � Ŵ¯j

)
u

(namely a point (t, ρ) ∈
(
T¯j � Ŵ¯j

)
u

if and only if u is the unipotent class associated by the Springer
correspondence to ρ).

(ii) We have a bijection⊔
U∈CU

u distinguished orbit

(
T¯j � Ŵ¯j

)
u
←→ Φe(G)¯j ∩ Φe(G)2.

(iii) For z ∈ C×, define

θz : T¯j � Ŵ¯j −→ T¯j/W¯j

by θz(t, ρ) =W¯j · (cu(z)t) if (t, ρ) ∈
(
T¯j � Ŵ¯j

)
u
. Then

θ1 = p¯j, and S̀c = θ√q ◦ µ¯j.

(iv) Let u, v ∈ CU , (t, ρ) ∈
(
T¯j � Ŵ¯j

)
u

and (t′, ρ′) ∈
(
T¯j � Ŵ¯j

)
v
.

Then µ−1¯j (t, ρ) and µ−1¯j (t′, ρ′) have the same Langlands param-

eter if and only if u = v and for all z ∈ C×, θz(t, ρ) = θz(t
′, ρ′).

Proof. In Theorem 3.3 we proved that we have a bijection between Φe(G)¯j
and the extended quotient T¯j � Ŵ¯j. Hence, S̀c is a bijection if and only

if there is a bijection between T¯j � Ŵ¯j and T¯j/W¯j. The last statement is

equivalent to saying that W¯j acts freely on T¯j. By definition of the map

µ¯j, the restriction to WF of the Langlands parameter associated to a point

(µ, ρ) ∈ T¯j�Ŵ¯j is µ. Hence, (µ, ρ) ∈ K¯j�Ŵ¯j if and only if µ(WF ) is bounded,

if and only if µ−1¯j (µ, ρ) ∈ Φe(G)¯j,temp. For point (i): the definition made in

the proposition defines the partition. For point (ii): a Langlands parameter
φ of G is discrete if and only if φ(1, ( 1 1

0 1 )) defines a distinguished unipotent
class of HG

φ . By the construction of µ¯j and the partition defined in (i), this
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shows (ii). For point (iii) is a consequence of the definition of the cuspidal
support of an enhanced Langlands parameter. To conclude, for point (iv),
if u = v and if for all z ∈ C×, θz(t, ρ) = θz(t

′, ρ′), then for z = 1 we obtain
t = t′. Recall that t represents the restriction to WF of the Langlands
parameter associate to the point. Since the points (t, ρ) and (t′, ρ′) have the
same labelling u, their Langlands parameters have the same restriction to
SL2, hence they have the same Langlands parameter. The other direction
is evident by the definitions. �

Theorem 3.5. Let G be a split classical group and let s = [L, σ] be an
inertial pair. Then there exists a bijection

Irr(G)s ←→ Ts � Ŵs,

which satisfies the same properties described above by replacing the corre-
sponding object on the side of representation theory.

Proof. In [Mou15, 4.1] we proved that if s = [L, σ] ∈ B(G) is an inertial
pair with L a Levi subgroup of G and if σ is an irreducible supercuspidal

representation of L and if ¯j = [L̂, ϕ, ε] ∈ Bst
e (G) is the corresponding inertial

triple obtained by the local Langlands correspondence, then Ts ' T¯j, Ws '
W¯j and the action ofW¯j on T¯j corresponds to the action of Ws on Ts through

the previous isomorphisms. In particular, we have a natural bijection

Ts � Ŵs ←→ T¯j � Ŵ¯j.

Moreover, in theorem 3.3 we have seen that there is a bijection

T¯j � Ŵ¯j ←→ Φe(G)¯j.

Finally, [Mou15, 4.6] shows that Irr(G)s is in bijection with Φe(G)¯j. By

composing these three bijections we obtain a proof of the Aubert-Baum-
Plymen-Solleveld conjecture for classical groups. �
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((1, 1), ρ3,1)↔ δ(ζ)
((1, 1), ρ′3,1)↔ δ′(ζ)

ζ � (S3 ⊕ S1) ⊕ 1 (L-packet={δ(ζξ), δ′(ζξ), σζ , σ′ζ} with

σζ , σ
′
ζ supercuspidal)

((−1,−1), ρ3,1)↔ δ(ζξ)
((−1,−1), ρ′3,1)↔ δ′(ζξ)

ζξ � (S3 ⊕ S1) ⊕ 1 (L-packet={δ(ζξ), δ′(ζξ), σζξ, σ′ζξ}
with σζξ, σ

′
ζξ supercuspidal)

((z, z), ρ2,2)↔ χζStGL2 o 1 χζ � S2 ⊕ 1⊕ χ−1ζ � S2

((z, 1), 1)↔ χζ o T ζ1
((z, 1), ε)↔ χζ o T ζ2

χζ ⊕ ζ ⊕ 1⊕ ζ ⊕ χ−1ζ

((z,−1), 1)↔ χζ o T ξζ1

((z,−1), ε)↔ χζ o T ξζ2

χζ ⊕ ζξ ⊕ 1⊕ ξζ ⊕ χ−1ζ

((z,−1), 1 � 1)↔ Q1(ζ o T ξζ1 )
((z,−1), ε� 1)↔ Q2(ζ o T ξζ1 )
((z,−1), 1 � ε)↔ Q1(ζ o T ξζ2 )
((z,−1), ε� ε)↔ Q2(ζ o T ξζ2 )

ζ ⊕ ξζ ⊕ 1⊕ ξζ ⊕ ζ

Table 4. Extended quotient for Sp4(F )

Example 3.6. We give here an example of Theorem 3.5 in the case where
G = Sp4(F ), T = (F×)2 is a maximal torus, ζ : F× −→ C× a ramified
character and s = [T, ζ � ζ]. The inertial pair s corresponds to the inertial

L-triple ¯j = [T̂ , ζ̂ � ζ̂, 1]
Ĝ

. We are looking at

Irr(G)s = {irreducible subquotients of iGB(χ1ζ � χ2ζ), χ1 � χ2 ∈ X (T )}.

The torus associated to s is Ts = {χ1ζ �χ2ζ, χ1�χ2 ∈ X (T )}. We have an
isomorphism Ts ' (C×)2 given by sending the character χ1ζ�χ2ζ ∈ Ts to the
point (z1, z2) ∈ (C×)2 where z1 = (χ1ζ)(Fr) and z2 = (χ2ζ)(Fr). In this case
Ws ' NG(T )/T = 〈s1, s2〉 where s1 and s2 act on Ts by s1(z1, z2) = (z2, z1)
and s2(z1, z2) = (z2, z1).

T s1s = {(z, z), z ∈ C×} T s1s /Zs1s =
{[

(z, z), (z−1, z−1)
]
, z ∈ C×

}
T s2s = {(z, 1), (z,−1), z ∈ C×} T s2s /Zs2s =

{[
(z, 1), (z−1, 1)

]
, z ∈ C×

}
t
{[

(z,−1), (z−1,−1)
]
, z ∈ C×

}
T s1s2s = {(1, 1), (−1,−1)} T s1s2s /Zs1s2s = {(1, 1), (−1,−1)}

T s1s2s1s2s = {(1, 1), (1,−1), (−1, 1), (−1,−1)} T s1s2s1s2s /Zs1s2s1s2s = {(1, 1), [(1,−1), (−1, 1)] , (−1,−1)}
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Following an idea from Plymen, in Table 4 we picture the extended quo-

tient Ts � Ŵs with the decomposition with respect of the unipotent classes.
In particular, the plane in red is associated to the unipotent with partition
(3, 1), the plane in green is associated to the unipotent with partition (2, 2)
and the plane in blue is associated with the partition (14). In particular,
the last plane in black is where the usual quotient Ts/Ws lives. We describe
each point of the extended quotient, the corresponding representation (in
the notation of [ST93]) and its Langlands parameter.

The L-inertial pair ˚iffl ∈ Bst(G) image of ¯j by Bst
e (G) −→ Bst(G) is ˚iffl =

[T̂ , ζ̂ � ζ̂]. In this case, we have :

Π+˚iffl (G) = Irr(G)[T,ζ�ζ]tIrr(G)[G,σζ ]tIrr(G)[G,σζξ]tIrr(G)[G,σ′ζ ]tIrr(G)[G,σ′ζξ]
.
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