
PROOF OF THE AUBERT-BAUM-PLYMEN-SOLLEVELD
CONJECTURE FOR SPLIT CLASSICAL GROUPS

AHMED MOUSSAOUI

Abstract. In this paper we prove the Aubert-Baum-Plymen-Solleveld
conjecture for the split classical groups and make the relation to the
Langlands correspondence. To do this, we review the notion of cuspi-
dality for enhanced Langlands parameters and also review the notion of
cuspidal support for enhanced Langlands parameters for split classical
groups, both introduced by the author in earlier work.
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Introduction

Let G be a connected reductivep-adic group and Irr(G) be the set of
(classes of) smooth irreducible complex representations ofG. On one hand,
the Bernstein decomposition gives a way to study Irr(G) in terms of para-
bolic induction. On the other hand, the Langlands correspondence predicts
a decomposition of Irr(G) into �nite subsets. It is natural to ask what is
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2 A. MOUSSAOUI

the relation between these two decompositions? We are particularly inter-
ested in the question of what are the Langlands parameters for supercuspidal
representations (see De�nition 2.4) and how to de�ne cuspidal support for
(enhanced) Langlands parameters (see Theorem 2.7).

In this paper we prove the Aubert-Baum-Plymen-Solleveld conjecture for
the split classical groups. This conjecture was also proved by Solleveld in
[Sol12] using di�erent arguments, which are discussed in Section 3.1. How-
ever, in that proof there is no link with the Langlands correspondence. The
proof presented here makes clear the relation between the ABPS conjec-
ture and the Langlands correspondence. Roughly speaking, this is done by
studying the link between the Langlands correspondence and the parabolic
induction. This requires a quick overview of [Mou15]. In fact, the main mo-
tivation for [Mou15] was the study of the Aubert-Baum-Plymen-Solleveld
conjecture. In particular, we note that our constructions �t naturally with
the work of Haines [Hai14] on the stable Bernstein centre, especially Conjec-
ture 2.2, regarding the compatibility of parabolic induction and the Lang-
lands correspondence.

In order to state the main result of this paper, we briey review the
Aubert-Baum-Plymen-Solleveld conjecture, beginning with what is com-
monly referred to as an extended quotient.

Let T be a complex a�ne variety and � be a �nite group acting on T.
For all t 2 T, let � t = f  2 � j  � t = tg be the stabilizer of t in �. The
group � acts on

Y = f (t; � ) j t 2 T; � 2 Irr(� t )g

by

� � (t; � ) = ( � � t; � � � ); � 2 � ; (t; � ) 2 Y;

where � � � 2 Irr(� � �t ) is de�ned by, ( � � � )(  ) = � (�� � 1), for all  2 � � �t .
The spectral extended quotient ofT by � is the quotient Y=� and it is denoted
by T � b�. Note that the projection map on the �rst coordinate Y �! T is
�-equivariant and this de�nes a projection map T � b� �! T=�.

We now recall the Bernstein decomposition; see [Ber84, 2.10,2.13] and
[Ren10, VI.7.1,VI.7.2,VI.10.3] for more detail. Let G be a connected re-
ductive group de�ned and splits over a p-adic �eld. We denote by i G

P and
r G

P the parabolic induction and Jacquet functors, respectively. Let � be an
irreducible smooth representation ofG. Let P be a parabolic subgroup ofG
with Levi factor M such that r G

P (� ) 6= 0 and minimal for this property. Let
� be an irreducible subquotient of r G

P (� ). Then � is an irreducible super-
cuspidal representation ofM . Moreover if (M 0; � 0) is an other pair which
arises in the same way for another parabolic subgroupP0, then there exists
g 2 G such that M 0 = gM and � ' g� 0. The G-conjugacy class of the
pair (M; � ) is called the cuspidal support of � . There are two equivalence
relations on the set of pairs (M; � ) where M is a Levi subgroup ofG and
� is an irreducible supercuspidal representation ofM : conjugation by G on
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these pairs and conjugation byG up to an unrami�ed character. More pre-
cisely, if (M 1; � 1) and (M 2; � 2) are two such pairs, then (M 1; � 1) is said to
be associated (resp. inertially equivalent) to (M 2; � 2) if there exists g 2 G
such that gM 1 = M 2 and � g

1 ' � 2 (resp. there exist g 2 G and an un-
rami�ed character � 2 2 X (M 2) such that gM 1 = M 2 and � g

1 ' � 2� 2). Let

( G) and B(G) be the set of associated equivalence classes (resp. inertial
equivalence classes) of pairs (M; � ) where M is a Levi subgroup ofG and
� is an irreducible supercuspidal representation ofM . Because the group
X (M ) of unrami�ed characters of M has a torus structure, we can associate
the following to each s = [ M; � ] 2 B(G):

� a torus Ts = f ��; � 2 X (M )g;
� a �nite group Ws = f w 2 NG(M )=M j 9� 2 X (M ); � w ' � 
 � g;
� an action of Ws on Ts.

The projection map 
( G) � B(G) allows us to identify the set of cuspidal
support which have the same images 2 B(G) to the quotient Ts=Ws. The
Bernstein decomposition of the set of irreducible representations ofG is a
partition of Irr( G) indexed by B(G):

Irr( G) =
G

s2B (G)

Irr( G)s:

Moreover, the cuspidal support map restrict on each pieces to a mapSc :
Irr( G)s �! Ts=Ws. The bene�t of this extended quotient is the following
conjecture, which predicts that we can recover Irr(G)s from the three data
associated tos described above.

Conjecture (Aubert-Baum-Plymen-Solleveld). For each s 2 B(G), there
exists a bijection

� s : Irr( G)s �! Ts � cWs:

In general the following diagram is not commutative

Irr( G)s Ts � cWs

Ts=Ws

Sc

� s

p s

but by precomposing the projection on the right with certain cocharacters of
Ts, called correcting cocharacters, then this diagram is commutative.

In [Aub+14a, 4.11], in the case where the Levi subgroup de�ning the in-
ertial pair is a maximal torus of a split group, the authors show that the cor-
recting cocharacter associated to [t; � ] 2 Ts � cWs is � � (1; diag(t; t � 1)) where
� = � � 1

s [t; � ] and � � is the Langlands parameter of the representation� . In
this paper, if s = [ M; � ] we show a more general formula for the correcting
cocharacter of [t; � ] 2 Ts � cWs, namely: � � (1; diag(t; t � 1))=� � (1; diag(t; t � 1))
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where � = � � 1
s [t; � ], � � and � � are the Langlands parameters of the repre-

sentations � and � respectively.
Here we prove the ABPS conjecture for split classical groups by estab-

lishing a Galois version of the ABPS conjecture, obtained by replacing the
representations with their (enhanced) Langlands parameters. To do this
we use [Mou15] which shows how to convert the supercuspidality of the
representation into a condition on the corresponding (enhanced) Langlands
parameter.

The article is organized as follows. In Section 1, we review the generalized
Springer correspondence which will be a tool for the next steps. Here we
give the examples of GLn and Sp6. In Section 2 we briey recall the local
Langlands correspondence for split groups, paying special attention to the
case of split classical groups. Then we recall the notion of cuspidal enhanced
Langlands parameters from [Mou15] and we explain how to construct the
cuspidal support of an enhanced Langlands parameter in the case of split
classical groups. Finally, in Section 3.3, after �nding the predicted correct-
ing cocharacters, we prove the ABPS conjecture for split classical groups.
We give a concrete example to illustrate it in the case of Sp4(F ).

1. Springer correspondence

Let H be a complex reductive algebraic group and consider the set

Ue
H = f (CH

u ; � ) j u 2 H unipotent ; � 2 Irr( AH (u))g;

where CH
u denotes theH -conjugacy class ofu and AH (u) = ZH (u)=ZH (u) �

with ZH (u) the centralizer of u in H . We denote the Weyl group of H by
WH = NH (T)=T with T a maximal torus of H . Suppose from here thatH
is connected.

Example 1.1. Let n > 1 be an integer and consider the groupH = GL n (C).
For any element u 2 H , the group AH (u) is trivial. A maximal torus T of
H is the group of diagonal matrices and the Weyl group ofH is WH ' S n ,
the symmetric group over n letters. Moreover, by the Jordan classi�cation,
the set Ue

H is parametrized by P(n), the set of partitions of n, as follows :

P(n) �! U e
H

(p1; : : : ; pr ) 7�!

0

B
@

0

B
@

Jp1

. . .
Jpr

1

C
A ; triv

1

C
A

with

Jd =

0

B
B
B
B
B
@

1 1
1 1

. . . . . .
1 1

1

1

C
C
C
C
C
A

2 GLd(C)
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By the theory of Young diagrams, irreducible representations ofWH ' S n
are parametrized byP(n). This gives a bijection between Irr(WH ) and Ue

H .

1.1. Ordinary Springer correspondence. In general, whenH is di�er-
ent from GLn , we do not have a bijection between Irr(WH ) and Ue

H but
there is an embedding Irr(WH ) ,! U e

H ; this embedding is called the ordi-
nary Springer correspondence. It was studied by Springer during the `70s in
[Spr78]. The ordinary Springer correspondence forH relates two di�erent
objects in nature: irreducible representations of the Weyl group ofH and
pairs (CH

u ; � ), where CH
u is a unipotent orbit in H and � is an irreducible

representation of AH (u). The Springer correspondence can be described
combinatorially.

Example 1.2. Recall that the unipotent classes ofH = Sp2n (C) are in
bijection with partitions of 2 n for which the odd parts have even multiplicity.
The Weyl group WH of H is isomorphic to S n n (Z=2Z)n and its irreducible
representations are in bijection with the set of bipartitions of n, i.e., the pairs
(�; � ) where �; � are partitions (perhaps trivial) such that j� j + j� j = n. For
instance, the trivial representation corresponds to the partition (n; 0) while
the sign representation corresponds to the partition (0; 1n ). See Table 1 for
the caseH = Sp6(C).

u AH (u) Irr( AH (u)) Irr( WH )
(6) Z=2Z 1 � (3;0)
(6) Z=2Z �

(4; 2) (Z=2Z)2 1 � 1 � (2;1)
(4; 2) (Z=2Z)2 � � � � (0;3)
(4; 2) (Z=2Z)2 1 � �
(4; 2) (Z=2Z)2 � � 1
(4; 12) Z=2Z 1 � ((2 ;1);0)
(4; 12) Z=2Z �
(32) f 1g 1 � (1;2)
(23) Z=2Z 1 � (12 ;1)
(23) Z=2Z �

(22; 12) Z=2Z 1 � (1;12 )
(22; 12) Z=2Z � � (0;(2;1))
(2; 14) Z=2Z 1 � (13 ;0)
(2; 14) Z=2Z �
(16) f 1g 1 � (0;13 )

Table 1. Spinger correspondence for Sp6(C)

1.2. Generalized Springer correspondence. One can ask how to de-
scribe elements inUe

H which are not in the image of the ordinary Springer
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correspondence Irr(WH ) ,! U e
H . This was completly established by Lusztig

in [Lus84] and called the generalized Springer correspondence, as we briey
recall here.

In order to describe the missing pieces, Lusztig de�ned fundamental blocks,
called cuspidal triples, consisting ofH -conjugacy classes of triples (L; CL

v ; " )
where L is a Levi subgroup of H , v is a unipotent element of L and " 2
Irr( AL (v)) is an irreducible cuspidal representation of AL (v). To each
(CH

u ; � ) 2 Ue
H , he associated a unique triple (L; CL

v ; " ); see [Lus84, 6.3,6.4].
All elements associated to a �xed triple (L; CL

v ; " ) are parametrized by Irr(W L
H )

with W L
H = NH (L )=L [Lus84, 6.4].

The notion of cuspidal representation ofAH (u) was introduced by Lusztig
in [Lus84, 2.4,6.2] and involves geometric objects. We now review this
notion as it appears in [Lus84]. Let u 2 H be a unipotent element and
" 2 Irr( AH (u)). Let P = MN be a parabolic subgroup ofH and v 2 M be
a unipotent element. Set

YP;u;v =
�

hZM (v) � N 2 H=ZM (v) � N j h 2 H; h � 1uh 2 vN
	

and

du;v =
1
2

(dim ZH (u) � dim ZM (v)) :

Then dim YP;u;v 6 du;v [Lus84, 1.1]. The groupZH (u) acts on YP;u;v by
left translation; this action factorizes to an action of AH (u) on the set of
irreducible components ofYP;u;v of dimensiondu;v . Let Su;v be the resulting
representation ofAH (u). Then " is a cuspidal representation ofAH (u) if for
all proper parabolic subgroupsP = MN of H and for all unipotent v 2 M ,
we have

HomA H (u) ("; Su;v ) = 0 :

Example 1.3. If P = B = TU, then

YB;u; 1 =
�

gB 2 H=B j g 2 H; g � 1ug 2 U
	

=
�

B 0 2 B j u 2 B 0	 = Bu ;

which is the Springer �ber of u. It was through this variety that Springer
established his original correspondence.

We may now state the generalized Springer correspondence. LetSH be
the set of H -conjugacy classes of cuspidal triples (L; CL

v ; " ) where

� L is a Levi subgroup ofH ;
� v 2 L is a unipotent element ofL ;
� " 2 Irr( AL (v)) is a cuspidal representation.

Theorem 1.4 (Lusztig, [Lus84, 6.5,9.2]). Let H be a connected complex
algebraic group. There is a surjective map

	 H : Ue
H �! S H

and, for each t = [ L; CL
v ; " ] 2 SH , a natural bijection

	 � 1
H (t)  ! Irr( NH (L )=L):
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For all t = [ L; CL
v ; " ], set M t = 	 � 1

H (t). The map 	 H induces a decompo-
sition of Ue

H :

Ue
H =

G

t2S H

M t :

The ordinary Springer correspondence is recovered from the Springer corre-
spondence by restricting to the caset = ( T; f 1g; 1) where T is a maximal
torus of H . It is remarkable that the Levi subgroups L of H which appear
in the generalized Springer correspondence forH are very special. In par-
ticular, the relative Weyl group W H

L = NH (L )=L is a Coxeter group [Lus84,
9.2] which is not true in general. This property is an important fact.

Let us describe the triples (H; CH
v ; " ) 2 SH for certain groups H .

� H = SL n (C). If ( H; CH
v ; " ) 2 SH then the unipotent element v cor-

responds to the partition (n), in which case AH (v) = Z=nZ. The
cuspidal representations" which appear in (H; CH

v ; " ) 2 SH are pre-
cisely those representations ofAH (v) for which ker( " ) = f 0g. In
particular, the cardinality of the set of the cuspidal representations
of AH (v) is � (n) (Euler's � -function).

� H = GL n (C). If ( H; CH
v ; " ) 2 SH then necessarilyn = 1, v = 1 and

AH (v) = f 1g.
� H = Sp2n (C). If ( H; CH

v ; " ) 2 SH then n = d(d+1)
2 for some integerd

and v corresponds to the partition (2d;2d� 2; : : : ; 4; 2), in which case
AH (v) =

Q d
i =1 hz2i i ' (Z=2Z)d. The representation " which appears

in (H; CH
v ; " ) 2 SH is precisely that for which "(z2i ) = ( � 1)i .

� H = SOn (C). If ( H; CH
v ; " ) 2 SH then n = d2 for some integerd and

v corresponds to the partition (2d� 1; 2d� 3; : : : ; 3; 1), in which case
AH (v) =

Q d� 1
i =1 hz2i +1 z2i � 1i ' (Z=2Z)d� 1 and "(z2i +1 z2i � 1) = � 1.

Example 1.5. We come back to our example of Sp6(C). The Levi subgroups
of H = Sp6(C) are: Sp6(C); GL1(C)� Sp4(C); GL2(C)� Sp2(C); GL1(C)2�
Sp2(C); GL3(C); GL2(C) � GL1(C); GL1(C)3: The only Levi subgroups
of Sp6(C) which can appear in the Springer correspondence for Sp6(C) are
H = Sp6(C); M = GL 1(C)2 � Sp2(C) and T = GL 1(C)3. We have :

L NH (L )=L

Sp6(C) f 1g

GL1(C)2 � Sp2(C) S 2 n (Z=2Z)2

GL1(C)3 S 3 n (Z=2Z)3

Table 2 describes the generalized Springer correspondence for Sp6(C);
the meaning of the u-symbols is given in [AA07, 3.2] or [Car93, 13.3] and
included here only for completeness.
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u AH (u) Irr( AH (u)) u symbol L Irr( W L
H )

(6) Z=2Z
1

�
3
�

�
T � (3;0)

�
�

�
3

�
M � 0

(2;0)

(4; 2) (Z=2Z)2

1 � 1 ( 0 4
2 ) T � (2;1)

� � � ( 0 2
4 ) T � (0;3)

1 � � ( 0
2 4 ) M � 0

(12 ;0)

� � 1
�

0 2 4
�

�
H 1

(4; 12) Z=2Z
1 ( 1 4

1 ) T � ((2 ;1);0)

� ( 1
1 4 ) M � 0

(1;1)

(32) f 1g 1 ( 0 3
3 ) T � (1;2)

(23) Z=2Z
1 ( 1 3

2 ) T � (12 ;1)

� ( 2
1 3 ) M � 0

(0;2)

(22; 12) Z=2Z
1 ( 0 2 5

2 4 ) T � (1;12 )

� ( 0 2 4
2 5 ) T � (0;(2;1))

(2; 14) Z=2Z
1 ( 1 3 5

1 3 ) T � (13 ;0)

� ( 1 3
1 3 5 ) M � 0

(0;12 )

(16) f 1g 1 ( 0 2 4 6
2 4 6 ) T � (0;13 )

Table 2. Generalized Springer correspondence for Sp6(C)

1.3. Generalized Springer correspondence for orthogonal groups.
Let n > 1 be an integer. In this paragraphH denotes the orthogonal group
On (C) or the group f (x i ) 2

Q m
i =1 On i (C) j

Q m
i =1 det(x i ) = 1 g . Note that H

is disconnected. Here we specialize the de�nitions appearing in Section 1.2
to this case and also state the generalized Springer correspondence for in
this case. First, recall that

Ue
H =

�
(CH

u ; � ) j u 2 H unipotent ; � 2 Irr( AH (u))
	

:

De�nition 1.6 ([Mou15, A.1]). A subgroup L of H is said to be aquasi-Levi
subgroupof H if there exists a torus A � H � such that L = ZH (A).

Example 1.7.

H L � L L=L � W H
L =WH �

L �

O2n+1
Q k

i =1 GLn i � SO2n0+1
Q k

i =1 GLn i � O2n0+1 Z=2Z f 1g ni > 0; n0 > 0
O2n

Q k
i =1 GLn i � SO2n0

Q k
i =1 GLn i � O2n0 Z=2Z f 1g ni > 0; n0 > 2

Q k
i =1 GLn i

Q k
i =1 GLn i f 1g Z=2Z ni > 0

Table 3. Levi and quasi-Levi subgroups of orthogonal groups
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In the previous de�nition, since L � = ZH � (A), then L � is Levi subgroup
of H � . If L is a quasi-Levi subgroup ofH and u 2 H � is unipotent, then
W L �

H � and AH � (u) are normal subgroups ofW L
H = NH (L )=L and AH (u),

respectively. If " 2 Irr( AH (u)), the restriction to the normal subgroup
AH � (u) decomposes as

" A H � (u) =
M

�

� 
 Cm ;

where � runs over some irreducible representations ofAH � (u) which are all
conjugate by AH (u) and m > 1 is an integer.

De�nition 1.8 ([Mou15, A.3]). Let " 2 Irr( AH (u)). Then " is a cuspidal
representation of AH (u) if the irreducible representations of AH � (u) which
appear in the restriction of " to AH � (u) are cuspidal in the sense of Lusztig
(recalled in Section 1.2.)

Notice that in the restriction of " to AH � (u), all the representations of
AH � (u) which appears are conjugate underAH (u). In particular, the cus-
pidality is preserved by such conjugation. As a consequence, one represen-
tation in the restriction is cuspidal if and only if all the representations are
cuspidal.

We may now state the generalized Springer correspondence for orthogonal
groups and some subgroups of orthogonal groups. LetSH be the set ofH -
conjugacy classes of triples (L; CL

v ; " ) for which

� L is a quasi-Levi subgroup ofH ;
� v 2 L � is a unipotent element ;
� " 2 Irr( AL (v)) is a cuspidal representation.

Theorem 1.9. [Mou15, A4,A8] AssumeH = f (x i ) 2
Q m

i =1 On i (C) j
Q m

i =1 det(x i ) = 1 g
or H = O n (C). There is a surjective map

	 H : Ue
H �! S H

and, for each t = [ L; CL
v ; " ] 2 SH , a natural bijection

	 � 1
H (t)  ! Irr( NH (L )=L):

For all t = [ L; CL
v ; " ], set M t = 	 � 1

H (t). The map 	 H induces a decompo-
sition of Ue

H :

Ue
H =

G

t2S H

M t :

2. Relation between the Langlands correspondence and the
Bernstein decomposition

2.1. Langlands correspondence. Let F be a p-adic �eld and G be (the
F -points of) a split connected reductive group overF . Let WF (resp. W 0

F =
WF � SL2(C)) be the Weil (resp. Weil-Deligne) group of F . We denote by bG
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the connected complex reductive group dual ofG. A Langlands parameter
for G is a group homorphism

� : W 0
F �! bG;

such that:

� the restriction to SL 2(C) is a morphism of algebraic groups;
� the restriction to WF is continuous and � (WF ) consists of semi-

simple elements.

If we denote by �( G) the set of bG-conjugacy classes of Langlands parameters
for G. The local Langlands correspondence predicts the existence of a �nite-
to-one map

recG : Irr( G) �! �( G);

which satis�es certain properties. To each � 2 �( G), one can expect to
attach a L-packet � � (G) which is a �nite set of irreducible representations
of G associated to� . Conjecturally, this set is parametrized by the irre-
ducible representations of a �nite group SG

� which is a quotient of A bG(� ),

the component group of the centralizer in bG of � (W 0
F ). Hence, if we denote

by
� e(G) = f (�; � ) j � 2 �( G); � 2 Irr( SG

� )g;

the set of enhanced Langlands parameters, then conjecturally, we have a
bijection

Irr( G)  ! � e(G);

and a decomposition

Irr( G) =
G

� 2 �( G)

� � (G):

2.2. Stable Bernstein centre. Recently, inspired by Vogan, in [Hai14]
Haines has de�ned the stable Bernstein centre and stated some conjectures
and gave some properties. In this paper we only consider the split case, but
Haines treats the general case. One can view the stable Bernstein centre as
an analogue of the Bernstein centre but for the Langlands parameters. It is
conjectured that the Langlands correspondence is compatible with parabolic
induction (see conjecture 2.2). Haines de�nes a cuspidal datum as a pair
( cM; � ) with cM a Levi subgroup of bG and � : WF �! cM a discrete Langlands
parameter for M (which means that the image of the parameter does not
factorize through a proper Levi subgroup of cM ). This plays the role of
cuspidal data for Langlands parameters. Also, he attaches to each Langlands
parameter of G a cuspidal datum and an inertial class. If cM is a Levi
subgroup of bG, we denote by L X (M ) =

n
� : WF =IF �! Z �

cM

o
. Then by

the Langlands correspondence for characters,L X (M ) is in bijection with the
group X (M ) of the unrami�ed characters of M . Following Haines [Hai14,
5.3.3], consider two equivalence relations� 
 and � B on the pairs (cM; � )
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with cM a Levi subgroup of bG and � : WF �! cM a discrete Langlands
parameter of M (trivial on SL 2(C)) de�ned by:

(1) ( cM 1; � 1) � 
 ( cM 2; � 2) if and only if there exists g 2 bG such that
g cM 1 = cM 2 and g� 1 = � 2;

(2) ( cM 1; � 1) � B ( cM 2; � 2) if and only if there exists g 2 bG and � 2
L X (M 2) such that g cM 1 = cM 2 and g� 1 = � 2� 2.

We denote by (� ) cM the cM -conjugacy class of� . Moreover, if we denote by

 st(G) (resp. Bst(G)) the equivalence classes for the relation� 
 (resp. � B)
then


 st(G) =
G

�i�2B st (G)

T�i�=W�i�;

with if �i�= [ cM; � ] :

� T �i�= f (�� ) cM ; � 2 L X (M )g ' L X (M )=L X (M )( � ) and L X (M )( � ) =
f � 2 L X (M ) j (� ) cM = ( �� ) cM g ;

� W �i�= f w 2 N bG( cM )=cM j 9� 2 L X (M ); (w � ) cM = ( �� ) cM g

To each Langlands parameter� , one can de�ne its in�nitesimal character
� � by de�ning for all w 2 WF

� � (w) = � (w; dw);

with dw = diag( jwj1=2; jwj � 1=2).

De�nition 2.1 (Haines [Hai14, 5.1]). Let cM be a Levi subgroup of bG and
� : WF �! cM ,! bG be a discrete Langlands parameter ofM . Let �i� =
[cM; � ] 2 B st(G) the inertial class de�ned by ( cM; � ). Then the in�nitesimal
packet of � is

� +
� (G) =

G

� 2 �( G)
� � = �

� � (G);

and the inertial packet of � is

� +
�i�(G) =

G

� 2 �( G)
� � = ��

� 2 L X (M )

� � (G) =
G

�� 2T �i�=W �i�

� +
�� (G):

Conjecture 2.2 (Haines [Hai14, 5.2.2],Vogan). Let � be an irreducible su-
percuspidal representation ofM and � be an irreducible subquotient of the
parabolically induced representationi G

P (� ) (where P is a parabolic subgroup
with Levi factor M ). By the Langlands correspondence, let

� � : W 0
F �! cM;

and
� � : W 0

F �! bG;
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be the respective Langlands parameters of� and � . By the embeddingcM ,!
bG, one can view� � as a Langlands parameter ofG. Then it is expected that
we have the following equality :

(� � � ) bG = ( � � � ) bG:

Currently, this conjecture is proved for GLn (essentially from the proof of
the Langlands correspondence see [Hai14, 5.2.3]) and for the split classical
groups by [Mou15, 4.7].

Example 2.3. Let G = GL 2(F ), T ' (F � )2 be the maximal torus of G
consisting of diagonal matrices. Letj � j be the norm of F � . Consider the
irreducible supercuspidal representation� = j � j 1=2 � j � j � 1=2 of T. Then the
induced representationi G

B (� ) has two irreducibles subquotients : � 1 = 1 GL 2

the trivial representation of G and � 2 = St GL 2 the Steinberg representation
of G.

The Langlands parameters of�; � 1 and � 2 are, respectively:

� � : W 0
F �! bT

(w; x) 7�! diag(jwj1=2; jwj � 1=2)
� � 1 : W 0

F �! bG
(w; x) 7�! diag(jwj1=2; jwj � 1=2)

� � 2 : W 0
F �! bG

(w; x) 7�! x

Hence, we have� � � = � � � 1
= � � � 2

.

2.3. Cuspidal enhanced Langlands parameter. Recall that we have
two decompositions of Irr(G), one by the Bernstein decomposition, the other
by the Langlands correspondence:

Irr( G) =
G

s2B (G)

Irr( G)s =
G

� 2 �( G)

� � (G):

We want to compare the two decompositions, in particular, we want to de-
scribe the Langlands parameters of supercuspidal representations and the
cuspidal support map.

If ' 2 �( G), recall that we have two groups A bG(' ) and SG
' de�ned by :

A bG(' ) = Z bG(' )=Z bG(' ) � and SG
' = Z bG(' )=Z bG(' ) � � Z bG:

Conjecturally Irr( SG
' ) parametrizes the L-packet � ' (G) and we have a sur-

jective map A bG(' ) � SG
' . We remark that if we denote H G

' = Z bG(' WF
),

then we have the following equalities

Z bG(' ) = Z bG(' WF
) \ Z bG(' SL2

) = ZZ bG ( ' W F
) (' SL2

) = ZH G
'

(' SL2
):
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The group H G
' is a reductive group and ifu' = '

��
1 1
0 1

��
, then A bG(' ) =

AH G
'

(' SL2
) and AH G

'
(' SL2

) = AH G
'

(u' ). In general, H G
' is a disconnected

group.

De�nition 2.4 ([Mou15, 3.4]). Let ' 2 �( G) be a discrete Langlands
parameter, " 2 Irr( SG

' ) and e" the pullback of " to A bG(' ) = AH G
'

(u' ). One

says that " is a cuspidal representation ofSG
' when e" is cuspidal with respect

to the group H G
' and u' (see De�nition 1.8). We denote by Irr( SG

' )cusp the
set of irreducible cuspidal representations ofSG

' . Moreover, one says that'
is a cuspidal parameter when Irr( SG

' )cusp is not empty.

Conjecture 2.5 ([Mou15, 3.5]). Let ' 2 �( G) be a Langlands parameter
of G. The L-packet � ' (G) contains supercuspidal representations ofG if
and only if ' is a cuspidal parameter ofG. Moreover, if ' is a cuspidal
parameter of G, the supercuspidal representations in� ' (G) are parametrized
by Irr( SG

' )cusp; in other words, there is a bijection

� ' (G)cusp  ! Irr( SG
' )cusp:

In the following we describe the cuspidal Langlands parameters for GLn (F ); Sp2n (F )
and SOn (F ). We denote by Sa the irreducible representation of dimensiona
of SL2(C) and by I O (resp. I S) a set of irreducible representations ofWF of
orthogonal type (resp. symplectic type). This means forI O (resp. I S) that
the image of � 2 I O can be factorized through an orthogonal group (resp.
symplectic group).

Proposition 2.6 ([Mou15, 3.7]). We keep same notations as before. The
cuspidal Langlands parameters forG are :

� GLn (F ),

' : WF �! GLn (C); irreducible (or equivalently, discrete) ;

� SO2n+1 (F ),

' =
M

� 2 I O

d�M

a=1

� � S2a

M

� 2 I S

d�M

a=1

� � S2a� 1; 8� 2 I O ; d� 2 N; 8� 2 I S; d� 2 N� ;

� Sp2n (F ) or SO2n (F ),

' =
M

� 2 I S

d�M

a=1

� � S2a

M

� 2 I O

d�M

a=1

� � S2a� 1; 8� 2 I O ; d� 2 N� ; 8� 2 I S; d� 2 N:

The conjecture 2.5 is true for GLn (F ); Sp2n (F ) and SOn (F ).

The last part follows by comparison the work of Harris-Taylor, Henniart
or Scholze for GLn (F ) and the work of Arthur and M�glin for the classical
groups.
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2.4. Cuspidal support. The cuspidal support of an irreducible represen-
tation of G is a class (ofG-conjugation) of a pair (L; � ) with L a Levi
subgroup of G and � an irreducible supercuspidal representation ofL . By
our previous conjecture 2.5, each such pair should correspond on the Galois
side to a triple ( bL; '; " ) with bL a Levi subgroup of bG, ('; " ) 2 � e(L )cusp.

Recall that we denote L X (G) =
n

� : WF =IF �! Z �
bG

o
and that there is

a bijection between L X (G) and the unrami�ed characters of G. De�ne two
relations � 
 e and � Be on the (set of) triples (bL; '; " ) as in the previous
paragraph :

(1) ( bL 1; ' 1; "1) � 
 e ( bL 2; ' 2; "2) if and only if there exists g 2 bG such
that g bL 1 = bL 2; g' 1 = ' 2 and "g

1 = "2 ;
(2) ( bL 1; ' 1; "1) � Be ( bL 2; ' 2; "2) if and only if there exist g 2 bG and

� 2 L X (L 2) such that g bL 1 = bL 2; g' 1 = ' 2� 2 and "g
1 = "2 .

Denote by 
 st
e (G) (resp. by Bst

e (G)) the equivalence classes of the relation
� 
 e (resp. � Be ). As before, we have


 st
e (G) =

G

	j2B st
e (G)

T	j=W	j;

with if 	j = [ bL; '; " ] :

� T 	j = f ('� ) bL ; � 2 L X (L)g ' L X (L)=L X (L)( ' ) and L X (L)( ' ) =

f � 2 L X (L) j (' ) bL = ( '� ) bL g ;
� W 	j = f w 2 N bG( bL)=bL j 9� 2 L X (L); (w ' ) bL = ( '� ) bL ; "w ' "g

We use the bijection between Irr(G) and � e(G) given by the local Lang-
lands correspondence; we also use a bijection between 
(G) and 
 st

e (G)
found by combining the local Langlands correspondence for supercuspidal
representations of the Levi subgroup ofG with proposition 2.6 and conjec-
ture 2.5. It follows that there is a cuspidal support map � e(G) ! 
 st

e (G)
such that the following diagram is commutative:

Irr( G) � e(G)


( G) 
 st
e (G)

Sc

rece
G

rece

( G )

It would be more interesting to de�ne the cuspidal support of (�; � ) 2 � e(G)
without assuming the local Langlands correspondence. We solve that prob-
lem in the following theorem.
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Theorem 2.7 ([Mou15, 3.20]). Let G be a split classical group, i.e. G =
Sp2n (F ) or G = SOn (F ). There exists a well-de�ned surjective map

S�c: � e(G) �! 
 st
e (G)

(�; � ) 7�! ( bL; '; " )
;

with the property that � � = � ' .

Proof. Here we give a sketch of the proof. Full details are available in
[Mou15, 3.20].

Recall the relation between the Langlands parameter in term of the Weil-
Deligne groupW 0

F and of the original Weil-Deligne group WDF = WF o C .
A Langlands parameter forG using the original Weil-Deligne group is a pair
(�; N ) with � : WF �! bG an admissible morphism andN 2 bg such that

8w 2 WF ; Ad( � (w))N = jwjN:

To � : W 0
F �! bG one can associate a pair (�; N ) by

� 7�! (� � ; N � ); 8w 2 WF ; � � = � (w; dw); N � = d� SL2 (C)

�
0 1
0 0

�
:

In the other direction, if ( �; N ) is �xed, by the Jacobson-Morozov-Kostant
theorem, there exists a map : SL2(C) �! bG such that the di�erential of 
sends (0 1

0 0 ) to N and for all t 2 C� and  (diag(t; t � 1)) commutes with the
image of � . Then, if we de�ne for all w 2 WF , � � by � � (w) =  (dw) � 1 then
we set

� (w; x) = � (w)� � (dw) (x):

Now we need a construction which involves the Springer correspondence.
We apply the Springer correspondence for the groupH G

� = Z bG(� WF
), the

unipotent class of u� = � (1; ( 1 1
0 1 )), or more precisely to the nilpotent class

of N � = d� SL2 (C) ( 0 1
0 0 ) and the irreducible representation e� of AH G

�
(u� ).

This de�nes a quasi-Levi subgroupH 0 of H G
� and a nilpotent N ' element of

the Lie algebra of H 0.
Remember that we want to de�ne a cuspidal triple (bL; '; " ) 2 
 st

e (G)
such that � ' = � � . Let A = Z �

H 0 be the identity component of the centre
of H 0 and let bL = Z bG(A). Then bL is a Levi subgroup of bG. Since we
have �xed � and we have obtained a nilpotent elementN ' , we have to
check if this de�nes a Langlands parameter. By an adaptation of a result
of Lusztig, for all w 2 WF ; Ad( � (w))N ' = jwjN ' . Then we can de�ne ' :
W 0

F �! bL for all ( w; x) 2 W 0
F by ' (w; x) = � (w)� ' (w) ' (x). The nilpotent

orbits which carry cuspidal local systems are distinguished. Hence' is a
discrete parameter ofL . It is automatically cuspidal because the Springer
correspondence associates to' a cuspidal representation ofA bL (' ). �

With reference to the proof above, note that, for all w 2 WF ,

� (w; 1) = � (w)� � (w) and ' (w; 1) = � (w)� ' (w):
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Hence,

� WF
= ' WF

� c; � c = � � =� ' :

We call � c a correcting cocharacter of ' in bG. This notion is treated with
more detail in [Mou15, 3.16,3.17].

The following proposition described the �bers of the map S�c : � e(G) !

 st

e (G) appearing in Theorem 2.7.

Proposition 2.8. Let ( bL; '; " ) 2 
 st
e (G) and � c1 ; : : : ; � cr be the correct-

ing cocharacter of ' in bG. The �ber of ( bL; '; " ) by S�c are parametrized by

the irreducible representations ofIrr( W
H G

' W F
� ci

H L
' W F

� ci

) such that the parameter�

constructed as above satis�es� ci = � � =� ' .

Proof. In the proof of Theorem 2.7, there is an additional object which is

needed to characterize (�; � ): the irreducible representation � 2 Irr( W
H G

�

H L
�

)

given by the Springer correspondence. Now we see that if (�; � ) 2 � e(G)
has cuspidal support (bL; '; " ) then necessarily � WF

= ' WF
� c with � c a

correcting cocharacter. The set of correcting cocharacters of' in bG is �nite
(this can be deduced from [KL87, 5.4.c]). Let� c1 ; : : : ; � cr be the correcting
cocharacters of' in bG and for all i 2 J1; r K, let � i = ' WF

� ci . Let i 2 J1; r K

and consider an irreducible representation� 2 Irr( W
H G

� i
H L

� i
). By the Springer

correspondence for the groupH G
� i

, to � is associated a unipotent element
u� i ;� 2 H G

� i
or, equivalently, a morphism  (� i ;� ) : SL2(C) �!

�
H G

� i

� � and
an irreducible representation � of AH G

� i
( (� i ;� ) ). De�ne � (� i ;� ) = � i  (� i ;� ) :

W 0
F �! bG. We can assume after conjugation that� (� i ;� ) is adapted to '

(see [Mou15, 3.16]). Now we apply the previous construction to see that
(� (� i ;� ) ; � ) 2 � e(G) is associated to (bL; '; " ) if and only if � � ( � i ;� )

= � ' ; in
other words if and only if � ci = � � ( � i ;� )

=� ' . �

We saw at the beginning of Section 2.3 that we wanted to compare the
two decomposition :

Irr( G) =
G

s2B (G)

Irr( G)s =
G

� 2 �( G)

� � (G):

For s = [ L; � ] 2 B(G), let S�i�(s) be the inertial pair [ cM � ' �
; � ' � ] 2 B st

e (G),

where ' � : W 0
F �! �( L ) is the Langlands parameter of � and cM � ' �

is a
Levi subgroup of bG which contains minimally the image of � ' � . We remark
that if ' SL2

6= 1 then L is not the dual of cM � ' �
. We have proved the

following :
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Theorem 2.9. Let �i�= [ cM; � ] 2 B st(G). Then we have :

� +
�i�(G) =

G

s2B (G)

S�i�(s)= �i�

Irr( G)s:

This motivates the following conjecture.

Conjecture 2.10. Let G be a reductive connected split group overF . Let
�i�= [ cM; � ] 2 B st(G). Then, we have :

� +
�i�(G) =

G

s2B (G)

S�i�(s)= �i�

Irr( G)s:

3. Aubert-Baum-Plymen-Solleveld conjecture for split
classical groups

3.1. Aubert-Baum-Plymen-Solleveld conjecture. In this section we
review the Aubert-Baum-Plymen-Solleveld conjecture as is stated in [Aub+14b,
15]. Let begin with the de�nitions of the so-called "extended quotient". Let
T be a complex a�ne variety and � be a �nite group acting on T as auto-
morphisms of a�ne variety. For all t 2 T, let � t = f  2 � j  � t = tg be the
stabilizer of t in �. Consider

X = f (t;  ) 2 T � � j  � t = tg and Y = f (t; � ) j t 2 T; � 2 Irr(� t )g:

The groupe � acts on X and Y by :

� � (t;  ) = ( � � t; �� � 1); and � � (t; � ) = ( � � t; � � � ); � 2 � ; (t; � ) 2 Y;

where � � � 2 Irr(� � �t ) is de�ned by, ( � � � )(  ) = � (�� � 1), for all  2 � � �t .
Remark that X has a natural structure of a�ne variety wheras there has not
a natural structure of variety on Y . In the following we recall the de�nitions
of the extended quotient as is stated in [Aub+14b, 11,13] but we give a
di�erent names.

De�nition 3.1 ([Aub+14b, 11,13]). The geometric extended quotient ofT
by � is the quotient X=� and it is denoted by T � �. The spectral extended
quotient of T by � is the quotient Y=� and it is denoted by T � b�.

Notice that in [Aub+14b] the authors state their conjecture with the
hypothesis that G is quasi-split. They have also a conjecture whenG is non
necessarily quasi-split.

Conjecture 3.2 (Aubert-Baum-Plymen-Solleveld). Let G be a split con-
nected reductivep-adic group ands 2 B (G) be an inertial pair for G. Then

(1) The cuspidal support map

Sc : Irr( G)s ! Ts=Ws

is one-to-one if and only if the action of Ws on Ts is free.



18 A. MOUSSAOUI

(2) There is a canonically de�ned commutative triangle

Ts � cWs

Irr( G)s �( G)s

� s

Moreover, the bijection � s should satis�es the following properties:

(i) The bijection � s maps K s � cWs onto Irr( G)s;temp .
(ii) For many s 2 B(G), the diagram

Irr( G)s Ts � cWs

Ts=Ws

Sc

� s

p s

does not commute.
(iii) There is an algebraic family

� z : Ts � cWs ! Ts=Ws

of �nite morphisms of algebraic varieties, with z 2 C� , such that

� 1 = ps; � p
q = Sc � � s

(iv) For each connected componentc of the a�ne variety Ts � Ws, there is
a cocharacter

hc : C� �! Ts

such that
� z[t; w] = Ws(h(z) � t) 2 Ts=Ws;

for all [t; w] 2 c.
Let Z1; : : : ; Zr be the connected components of the a�ne varietyTs� Ws
and let h1; : : : ; hr be the cocharacters associated. Let

� s : X s ! Ts � Ws

be the quotient map. Then the connected componentsX 1; : : : ; X r of the
a�ne variety X s can be chosen with

� � s(X j ) = Z j for j 2 J1; r K.
� For each z 2 C� the map mz : X j ! Ts=Ws, which is the compo-

sition
X j ! Ts ! Ts=Ws
(t; w) 7! hj (z)t 7! Ws(hj (z)t)

makes the diagram
X j Z j

Ts=Ws

mz

� s

� z
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� There exists a map of sets� : Z1; : : : ; Zr ! V (called a labeling)
such that for any two points [t; w] and [t0; w0] of Ts � Ws: � s[t; w]
and � s[t0; w0] are in the same L-packet if and only if � z[t; w] =
� z[t0; w0]0 for all z 2 C� and � [t; w] = � [t0; w0], where � has been
lifted to a labelling of Ts � Ws in the evident way.

Aubert, Baum and Plymen proved the conjecture for the group G2 in
[ABP11]. Solleveld proved a version of this conjecture for extended Hecke
algebras in [Sol12] which, as a consequence, demonstrates the validity of the
ABPS for split classical groups. In a re�ned version stated in [Aub+15],
Aubert, Baum, Plymen and Solleveld prove the conjecture for the inner
forms of GLn and SLn using the relation with the Langlands correspondence.
Recently, in [Aub+14c], the authors prove the conjecture for the principal
series representations of split connected reductive groups, in relation with
the Langlands correspondence.

3.2. Galois version of ABPS conjecture. Let G be a split classical
group, i.e., G = Sp2n (F ) or G = SOn (F ). Let 	j = [ bL; '; " ] 2 B st

e (G).

Recall the we have de�ned a torusT	j = f ('� ) bL j � 2 L X (L)g. Since ' is

�xed and the multiplication by an unrami�ed cocharacter does not a�ect
the SL2(C) part, we can identify T	j with the restriction of '� to WF for all

� 2 L X (L). Moreover, if ( �; � ) 2 � e(G)	j, we denote by � (�;� ) 2 Irr( W
H G

�

H L
�

)

the irreducible representation attached by the Springer correspondence.

Theorem 3.3. Let G be a split classical group, i.e.,G = Sp2n (F ) or G =
SOn (F ). Let 	j = [ bL; '; " ] 2 B st

e (G). Then the following map de�nes a
bijection :

� 	j : � e(G)	j �! T 	j � cW	j

(�; � ) 7�! (� WF
; � (�;� ) )

:

Just before proving the theorem, notice that the theorem is true without
assuming the Langlands correspondence.

Proof. Let ( �; � ) 2 � e(G)	j. Then � WF
= ' WF

�� c, where � 2 X (L) and

� c is the correcting cocharacter associated to (�; � ). Hence � WF
is a twist

of ' WF
by an unrami�ed cocharacter. Denote by A bL = Z �

bL
and note that
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the stabilizer of � WF
is

W	j;� = f w 2 W 	j j (w('�� c)) bL = ( '�� c) bL g

' NZ bG ( '�� c ) (A bL )=ZbL ('�� c)

= NZZ bG
( ' W F

�� c ) ( ' SL 2
) (A bL )=ZZ bL ( ' W F

�� c ) (' SL2
)

= NZZ bG
( � W F

) ( ' SL 2
) (A bL )=ZZ bL (� W F

) (' SL2
)

' NZ bG (� W F
) (A bL )=ZbL (� WF

)

= W
H G

�

H L
�

:

Here we use [Lus88, 2.6.b] and Table 3 in the penultimate line. This shows
that the map � 	j is well de�ned. This map is surjective by Proposition 2.8

and its proof. Moreover, the bijectivity of the Springer correspondence for
the groups H G

'� shows that this map is injective.
�

3.3. Proof of ABPS conjecture. Let G be a split classical group and
	j = [ bL; '; " ] 2 B st

e (G). Before proving the ABPS conjecture, let us introduce
some de�nitions and notations. We denote by �( G)2 (resp. �( G)temp ) the
set of discrete (resp. tempered) Langlands parameters ofG. By de�nition,
� 2 �( G)2 when � (WF ) is not contained in a proper Levi subgroup of bG
and � 2 �( G)temp when � (WF ) is bounded. Similarly, we denote by � e(G)2
(resp. � e(G)temp ) the set of enhanced Langlands parameters for which the
Langlands parameter is discrete (resp. tempered). Recall that in Sp2n (C)
or SOn (C) the unipotent classes are completely determined by their Jordan
decomposition, or in other words, by the partition associated (except for
SO2n (C) and when the partition has only even parts with even multiplic-
ities for which there are two distincts orbits). Because the group that we
will consider are products of complex symplectic groups, orthogonal groups
and general linear groups, the unipotent classes which arise inZ bG(' WF

� ) �

are characterized by their partition. In particular, as � runs over L X (L),
�nitely many unipotent classes arise in this manner. Let CUbe a system of
representative of unipotent classes ofZ bG(' WF

� ) � when � runs over L X (L).
We can assume that elements inCU are adapted to ' in bG (see [Mou15,
3.16]). Let u 2 CU and  u : SL2(C) �! Z bG(' (I F )) � be such that  u is
adapted to ' SL2

. De�ne

cu : C� �! Z �
bL

z 7�!  u
� z 0

0 z� 1

�
=' SL2

� z 0
0 z� 1

�
:

Proposition 3.4. Let G be a split classical group and suppose	j = [ bL; '; " ] 2
Bst

e (G). The map � 	j satis�es the following properties.
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(1) The cuspidal support map

S�c: � e(G)	j ! T 	j=W	j

is one-to-one if and only if the action of W	j on T	j is free.

(2) Let K 	j be the maximal compact torus inT	j. Then the previous bi-

jection induces a bijection

K 	j � cW	j  ! � e(G)	j \ � e(G)temp :

(3) Let CUbe a system of representatives of unipotent classes ofZ bG(' WF
� ) � ,

when� runs over L X (L). There exists a partition of T	j � cW	j indexed

by CU with the following properties.
(i) T	j� cW	j =

G

u2CU

�
T	j � cW	j

�

u
(namely a point (t; � ) 2

�
T	j � cW	j

�

u

if and only if u is the unipotent class associated by the Springer
correspondence to� ).

(ii) We have a bijection
G

U2CU
u distinguished orbit

�
T	j � cW	j

�

u
 ! � e(G)	j \ � e(G)2:

(iii) For z 2 C� , de�ne

� z : T	j � cW	j �! T 	j=W	j

by � z(t; � ) = W	j � (cu(z)t) if (t; � ) 2
�

T	j � cW	j
�

u
. Then

� 1 = p 	j; and S�c= � p
q � � 	j:

(iv) Let u; v 2 CU, (t; � ) 2
�

T	j � cW	j
�

u
and (t0; � 0) 2

�
T	j � cW	j

�

v
.

Then � � 1
	j (t; � ) and � � 1

	j (t0; � 0) have the same Langlands param-

eter if and only if u = v and for all z 2 C� ; � z(t; � ) = � z(t0; � 0).

Proof. In Theorem 3.3 we proved that we have a bijection between �e(G)	j

and the extended quotient T	j � cW	j. Hence, S�c is a bijection if and only

if there is a bijection between T	j � cW	j and T	j=W	j. The last statement is

equivalent to saying that W	j acts freely on T	j. By de�nition of the map

� 	j, the restriction to WF of the Langlands parameter associated to a point

(�; � ) 2 T	j� cW	j is � . Hence, (�; � ) 2 K 	j� cW	j if and only if � (WF ) is bounded,

if and only if � � 1
	j (�; � ) 2 � e(G)	j;temp . For point ( i ): the de�nition made in

the proposition de�nes the partition. For point ( ii ): a Langlands parameter
� of G is discrete if and only if � (1; ( 1 1

0 1 )) de�nes a distinguished unipotent
class ofH G

� . By the construction of � 	j and the partition de�ned in ( i ), this
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shows (ii ). For point ( iii ) is a consequence of the de�nition of the cuspidal
support of an enhanced Langlands parameter. To conclude, for point (iv ),
if u = v and if for all z 2 C� ; � z(t; � ) = � z(t0; � 0), then for z = 1 we obtain
t = t0. Recall that t represents the restriction to WF of the Langlands
parameter associate to the point. Since the points (t; � ) and (t0; � 0) have the
same labellingu, their Langlands parameters have the same restriction to
SL2, hence they have the same Langlands parameter. The other direction
is evident by the de�nitions. �

Theorem 3.5. Let G be a split classical group and lets = [ L; � ] be an
inertial pair. Then there exists a bijection

Irr( G)s  ! Ts � cWs;

which satis�es the same properties described above by replacing the corre-
sponding object on the side of representation theory.

Proof. In [Mou15, 4.1] we proved that if s = [ L; � ] 2 B(G) is an inertial
pair with L a Levi subgroup of G and if � is an irreducible supercuspidal
representation ofL and if 	j = [ bL; '; " ] 2 B st

e (G) is the corresponding inertial
triple obtained by the local Langlands correspondence, thenTs ' T 	j; Ws '

W	j and the action of W	j on T	j corresponds to the action ofWs on Ts through

the previous isomorphisms. In particular, we have a natural bijection

Ts � cWs  ! T 	j � cW	j:

Moreover, in theorem 3.3 we have seen that there is a bijection

T	j � cW	j  ! � e(G)	j:

Finally, [Mou15, 4.6] shows that Irr(G)s is in bijection with � e(G)	j. By

composing these three bijections we obtain a proof of the Aubert-Baum-
Plymen-Solleveld conjecture for classical groups. �
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((1 ; 1) ; � 3; 1 ) $ � ( � )
((1 ; 1) ; � 0

3; 1 ) $ � 0( � )
� � (S3 � S1 ) � 1 (L-packet= f � ( �� ) ; � 0( �� ) ; � � ; � 0

� g with
� � ; � 0

� supercuspidal)

(( � 1; � 1) ; � 3; 1 ) $ � ( �� )
(( � 1; � 1) ; � 0

3; 1 ) $ � 0( �� )
�� � (S3 � S1 ) � 1 (L-packet= f � ( �� ) ; � 0( �� ) ; � �� ; � 0

�� g
with � �� ; � 0

�� supercuspidal)

(( z; z ) ; � 2; 2 ) $ �� St GL 2 o 1 �� � S2 � 1 � � � 1 � � S2

(( z; 1) ; 1) $ �� o T �
1

(( z; 1) ; " ) $ �� o T �
2

�� � � � 1 � � � � � 1 �

(( z; � 1) ; 1) $ �� o T ��
1

(( z; � 1) ; " ) $ �� o T ��
2

�� � �� � 1 � �� � � � 1 �

(( z; � 1) ; 1 � 1) $ Q 1 ( � o T ��
1 )

(( z; � 1) ; " � 1) $ Q 2 ( � o T ��
1 )

(( z; � 1) ; 1 � " ) $ Q 1 ( � o T ��
2 )

(( z; � 1) ; " � " ) $ Q 2 ( � o T ��
2 )

� � �� � 1 � �� � �

Table 4. Extended quotient for Sp4(F )

Example 3.6. We give here an example of Theorem 3.5 in the case where
G = Sp4(F ), T = ( F � )2 is a maximal torus, � : F � �! C� a rami�ed
character and s = [ T; � � � ]. The inertial pair s corresponds to the inertial
L -triple 	j = [ bT ; b� � b�; 1]bG. We are looking at

Irr( G)s = f irreducible subquotients of i G
B (� 1� � � 2� ); � 1 � � 2 2 X (T)g:

The torus associated tos is Ts = f � 1� � � 2�; � 1 � � 2 2 X (T)g. We have an
isomorphismTs ' (C� )2 given by sending the character� 1� � � 2� 2 Ts to the
point ( z1; z2) 2 (C� )2 wherez1 = ( � 1� )(Fr) and z2 = ( � 2� )(Fr). In this case
Ws ' NG(T)=T = hs1; s2i where s1 and s2 act on Ts by s1(z1; z2) = ( z2; z1)
and s2(z1; z2) = ( z2; z1).

T s1
s = f (z; z); z 2 C� g T s1

s =Zs1
s =

��
(z; z); (z� 1; z� 1)

�
; z 2 C� 	

T s2
s = f (z;1); (z; � 1); z 2 C� g T s2

s =Zs2
s =

��
(z;1); (z� 1; 1)

�
; z 2 C� 	

t
��

(z; � 1); (z� 1; � 1)
�

; z 2 C� 	

T s1 s2
s = f (1; 1); (� 1; � 1)g T s1 s2

s =Zs1 s2
s = f (1; 1); (� 1; � 1)g

T s1 s2 s1 s2
s = f (1; 1); (1; � 1); (� 1; 1); (� 1; � 1)g T s1 s2 s1 s2

s =Zs1 s2 s1 s2
s = f (1; 1); [(1; � 1); (� 1; 1)] ; (� 1; � 1)g
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Following an idea from Plymen, in Table 4 we picture the extended quo-
tient Ts � cWs with the decomposition with respect of the unipotent classes.
In particular, the plane in red is associated to the unipotent with partition
(3; 1), the plane in green is associated to the unipotent with partition (2; 2)
and the plane in blue is associated with the partition (14). In particular,
the last plane in black is where the usual quotientTs=Ws lives. We describe
each point of the extended quotient, the corresponding representation (in
the notation of [ST93]) and its Langlands parameter.

The L-inertial pair �i� 2 B st(G) image of 	j by Bst
e (G) �! B st(G) is �i� =

[ bT ; b� � b� ]. In this case, we have :

� +
�i�(G) = Irr( G)[T;� � � ] t Irr( G)[G;� � ] t Irr( G)[G;� �� ] t Irr( G)[G;� 0

� ] t Irr( G)[G;� 0
�� ]:
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